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Refraction of elliptical surfaces
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ABSTRACT

Refraction from elliptical surface sections is analyzed in this study. With specific adjustments of their 
eccentricities, the condition of aspherical refraction (image formation at an only point the focal point of 
the surface can be achieved when the incident wave exhibits plane wavefronts and propagates parallel 
to the optical axis, i.e., when the object (radiant power source) is at infinite distance. On the contrary, 
for objects located at finite distances, elliptical surfaces cannot produce aspherical refraction. The 
formulations and their respective demonstrative calculations are presented in this study. We also show 
that multifocality, governed by varying radii of curvature on a surface, is a specific optical condition of 
elliptical sections which serve as matrices of these refractometric applications.

RESUMO

Considera-se a refração em secções de superfícies elípticas para mostrar que com ajustamentos 
específicos de suas excentricidades se possa prover a condição de “asfericidade” (formação da imagem 
em um único ponto, o foco imagem da superfície) quando a incidência for a de frentes de ondas planas 
e com direção paralela ao eixo óptico, isto é, quando o objeto (fonte de energia radiante) estiver à 
distância infinita. Contrariamente, para objetos situados a distâncias finitas, a “asfericidade” não pode 
ser assegurada por superfícies elípticas. As formulações e os respectivos cálculos demonstrativos são 
apresentados. Também se mostra que a multifocalidade, dependente de raios de curvatura variáveis 
em uma superfície, é condição óptica própria das secções elípticas que servem como matrizes dessas 
aplicações refratométricas. 

INTRODUCTION

The study of optical geometry is of paramount 
importance in ophthalmology, since it addresses one 
of the most commonly used aspects in its daily prac-
tice: eye refractometry with its possible resulting ap-
plications (prescription of optical corrections). In fact, 
it is recognized that eye consultations, for the most 
part, occur due to problems that can be corrected by 
the proper application of simple measures related to 
eye refraction, such as eyeglass, contact, and intrao-

cular lenses; surgical remodeling of the anterior face 
of the cornea; and other interventions. Thus, in the 
two most important books published by the Brazilian 
Council of Ophthalmology on the subject, the empha-
sis given to the optical phenomenon of refraction and 
its applications, in the first sentence of their prefaces, 
is paradigmatic. The oldest one1 starts by quoting that 
“Eye refractometry is the most demanding procedu-
re among all who take a person to eye consultation.” 
The more recent book2 reiterates this importance in 
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the following: “Among the multiple actions expected 
of an ophthalmologist in the exercise of his profes-
sion, the most common is optical prescriptions.”

Obviously, knowledge about refraction is not li-
mited to such specialists. It extends to those who 
develop the principles for these solutions as well as 
to those who manufacture or sell the products that 
make them possible. This knowledge is also valuable 
for other diverse areas of human activity, such as vi-
sual prospection of far distant objects (astronomical 
or terrestrial telescopy) or those very small (micros-
copy). In fact, until recently, refraction was regarded 
as an optical phenomenon linked to the propaga-
tion of visible light. Currently, however, refraction is  
known to be more general, extending to radiations of 
any frequency.

Despite not being an exclusively optical pheno-
menon, refraction was first described in such conno-
tation. In fact, the empirical observations obtained in 
the 2nd century by Ptolemy (Klaúdius Ptolemaios who 
lived from 90-168 AC according to some sources, or 
100-160 AC according to others) are surprising. His 
measurements of refractive angles from air to water 
and air to glass, are remarkable approximations of the 
exact values, especially considering the relatively pre-
carious instrumentation he used to obtain those re-
sults. For example, for every 10° increments from 0° 
to 60°, from air to water, his absolute errors are between 
0 to 39’ (at the incidence of 20°), (16.14’±16.48’).
From air to glass, the errors were between 0 to 34’ (at 
the incidence of 20°), (17.12±15.11) , with an ove-
rall average error margin of only 2.08%. Almost all 
differences are accounted by the fact that measured 
values exceed the real exact values, which we could 
attribute to a systematic error in the measurement 
process. It is therefore quite possible that if Ptolemy 
had the mathematical arsenal by which the law of 
refraction was later enunciated, he would have come 
to its formulation. He correctly postulated that 
when light (or rays of vision) penetrate a medium 
with a higher refractive index, it approaches the per-
pendicular to the surface; contrarily, when it travels 
from that medium to another medium possessing a 
lower refractive index (air), it distances itself from 
that perpendicular (Hirschberg, p. 151)3, a principle 
that remains unchanged.

It took another millennium and a half since then 
for the generic law of refraction-a concept with elegant 
simplicity-to be formulated once the mathematical 
instrumental necessary to enunciate this knowledge 

was unveiled in the 17th century. It addresses the 
possible change of direction of propagation of ra-
diant energy on a medium toward that of the refrac-
ted radiant energy in the next, at each specific point 
of a surface separating them.

This discovery is attributed to Willebrord Snel van 
Royen (1580-1626), or Willebrord Snellius (with two 
“l”s in the Latin transcription of his Dutch name, 
due to which the Anglo-Saxon version of his name 
“Snell” became widespread). Without a specific date 
to certify it (being discovered only after his death) 
Snell wrote the following:

 ci. csc i = cr. csc r (F. 01)

where the cosecants of the incidence (csc i) and 
refraction (csc r) angles are inversely proportional to 
the speeds of light in their respective media (ci or cr). 
The canonical form, as it is now known, was propo-
sed by René Descartes (1637) :

 ni. sin i = nr. sin r (F. 02)

where the sine of the incidence (sin i) and refrac-
tive (sin r) angles are inversely proportional to the 
refractive indices of their respective mediums. The 
refractive index of a medium (such as that of inci-
dence, ni) corresponds to the speed of light value in 
that medium (such as that of incidence, ci) relative 
to the speed of light in vacuum (c0), i.e., ni = c0/ ci. 
Therefore, a value of inverse magnitude, implying a 
lower speed of light in the medium, results in a hi-
gher refractive index. Given that the cosecant of an 
angle is the reciprocal trigonometric function of the 
respective sine and considering the refractive index is 
the reciprocal of the speed of light, there is an absolu-
te reciprocity between the formulations of Snell and 
Descartes, which substantiates using the expression 
“Snell-Descartes” law:

 (csc r) / (csc i) = (ci / cr) = [(c0 / cr) / (c0 / ci)] =  
nr / ni = ( sin i) / (sin r) (F.03)

The phenomenon of refraction, therefore, is go-
verned by a principle formulated using the rela-
tionship of angles (expressed by a trigonometric func-
tion), which is universally reproducible for the pair 
of mediums between which it occurs, i.e., the rela-
tionship between its refraction indices remains cons-
tant. Quantifying these angles of incidence, i, and of 
refraction, r, implicitly requires the establishment of 
a reference, which is the imaginary normal line or the 
perpendicular to the point where refraction occurs.



Bicas HEA

eOftalmo. 2021;7(2):58-84.
 

60

eOftalmo

In geometry, perpendicular lines to a point is non-
sensical (infinite straight lines in any directions can 
pass through a point). To solve this question, one 
considers that the point where the refraction occurs 
is the place where, both, the surface (which has the 
point) and a tangent to it coincide. So that, a per-
pendicular to the tangent surface at this point is also 
perpendicular to the surface at that point. In other 
words, among the infinite lines which could serve as 
reference, only one, the “normal line” to the surface 
is valid. Therefore, although refraction is, effectively, 
a punctual phenomenon, it depends on the curvature 
of the surface at the point where it occurs.In other 
words, the claim that refraction at a point is inde-
pendent of the surface is only partially correct. In its 
essence, the assertion is true: a light ray’s direction 
(direction of the wave front with which radiant ener-
gy is propagated) remains the same regardless of whe-
ther the surface is flat, concave, convex, or in any 
other shape (Figure 1). However, this statement does 
not apply to one of the main practical applications of 
optics, in determining the image position of an object 
(Figure 1).

E.g.: for an object (P) located at distance p= 
-10 cm, if we assume the radii of curvature for the 
convex (R= +20 cm), flat (R= +∞), and concave  
(R = -20) surfaces, their respective images will form 
at distances q = -20, -15 and -12 cm, i.e., in different 
positions relative to each of the surfaces, dependent 
on the respective surface curvatures at the point con-
sidered. If the object was at -100 cm, the positions of 
the images are +100, -150 and -42.86 cm respectively.

Curvature of a surface
Although refraction is postulated as occurring at a 

“point”, the correct claim is that it shall be measured 
relatively to a perpendicular line to it. Which refers 
to either a surface, a section of it (in three-dimen-
sional space), or to another (tangent) line (in two-di-
mensional space). In other words, the treatment of 
a perpendicular to a point on a surface (or line) is 
subjected to the geometry of a surface’s curvature (or 
line) at that specific point, and this perpendicular is 
quantified by the radius of curvature of a surface (or 
line) at that specific point. Essentially, the concept 
of refraction is closely dependent on a surface’s (or 
line’s) curvature at one of its points.

Lines or surfaces may be mathematically defi-
ned by their curvatures, or by their reciprocal cur-
vature radii: either constant and infinite (that of a 
straight line, or a plane), constant and finite (those 
of circles, or spheres), or progressively variables (e.g., 
those of conical sections, spheroids, or ellipsoids ), 
among other natures. Refraction on flat surfaces has 
been widely studied in optical prisms. On the other 
hand, ophthalmic lenses for correcting ocular opti-
cal defects are all curved (one of their faces, at least). 
Nevertheless, it is odd that their refraction principles 
may be explained simply by the principles of spheri-
cal surfaces (given the relative simplicity of their ge-
ometry). Moreover, although it is recognized that the 
study of spherical optics is inherently defective, given 
the spherical aberration phenomenon,the approach 
of alternative curves is not commonly offered. But 
elliptical surface optics would provide the solutions 
to aspherical lens optics (that is, without presenting 
spherical aberration) and optical refinements as those 
of multifocal lenses.

In fact, a thorough study of curvatures impo-
ses great difficulties such as requiring knowledge of 
diffe rential geometry. In certain simpler cases, such 

Figure 1. Representation of refraction in a plane where the propagation 
of radiation is considered at a point (P) of a surface and of a tangent 
plane to it (T). Therefore, the perpendicular line to the plane, at P, is 
also perpendicular to the surface, that is, its “normal line” (N). On a 
convex, flat, or concave surface, a medium of incidence with a lower 
refractive index (above, ni = 1.0) and a higher index of the medium 
of refraction (below, nr = 1.5) produce identical refraction angles (r) 
for the same incidence angles (i). Although the relationship between 
them (i and r) might be different, the ratio between their sines always 
follows refraction’s law. It is therefore said that there is no difference 
between “refraction” at a point, regardless of a surface’s shape: be it 
convex, flat, concave, or any other. However, for the image position, 
the conditions differ (below). 
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as refraction on elliptical surfaces, the Cartesian 
analytical treatment of problems would suffice. Even 
so, the discomfort of following these paths is noto-
rious, as wisely exposed in the presentation of ano-
ther highly celebrated national textbook4, alluding to 
an undeniable pedagogical reference on the study of 
refraction5: “fortunately Donders was self-admittedly 
no mathematician and he wrote in clear and simple 
language, so that his book became popular.” And 
also, in subsequent complementation, the author of 
another classic work6, “Duke-Elder’s Practice of Re-
fraction” (1st Edition 1928), sought to avoid a mathe-
matical presentation of refraction errors and the way 
to correct them4.

Unequivocally, mathematical developments are 
generally difficult to follow up when they are unfa-
miliar, but indispensable to those who want to de-
epen any subject on which they are founded (the 
celebrated Helmholtz, in his celebrated three volu-
mes of the Treaty on Physiological Optics, overused 
this resource). This does not justify the lack of refe-
rence to the nature of the solution of the problem. 
The lack of any mention of terms such as “ellipse” 
and “elliptical curve (or surface)” or similar terms 
is absolutely disconcerting, as is any correlation to 
the optics presented either in books on the study of 
refraction-those discussed earlier1-6, others7-10, those 
dedicated to optics (lenses manufacture)11,12, or even 
in the most well-known international literature-old 
and recent alike 13-25. When used, these terms have 
little in common with the refraction phenomenon’s 
own nature; e.g., the Tscherning ellipse24 (a graphical 
expression of the relationship between the dioptric 
power of ophthalmic lenses and the recommended 
base curves), or elliptical polarization19 (in relation to 
one of the modalities of the electromagnetic energy 
polarization phenomenon). In fact, even when ellipti-
cal sections are considered, such as sections of cylin-
drical (or toric) lenses inclined relative to their axes, 
the optics of elliptical sections are not described . In 
fact, one of the most important ophthalmological 

compendiums26 states that “The surface dealt with 
in optics are generally spherical in shape … while the 
production of non-spherical or asphericsurfaces (which 
are actually more desirable in some instances) is ex-
tremely difficult. For this reason, spherical surfaces 
are employed almost exclusively in optics, and they 
usually perform adequately” (pp. 6-7)26. Even when 
addressing cylindrical lenses, no reference is made to 
“ellipticals” (for their sections) On the contrary, little 

familiarity with such elementary geometric issues 
leads to the surprising statement that “There is no 
optical power in oblique meridians of a toric refrac-
ting surface” (p. 46, op. cit.). The mistake was not to 
consider the coplanarity of the incident and refracted 
rays, but to consider “...’skew rays’ because they are 
skewed about the axis,” with which the text conclu-
des as follows: “these limiting rays are deviated by 
different amounts in the two corresponding direc-
tions” (The bold type was my addition). In a later edi-
tion27 this oversight is corrected, acknowledging that 
“There is a different power in every meridian” (p. 87), 
which is illustrated by an enlightening figure (fig. 72), 
despite it not detailing how and why this refraction 
(on elliptical surfaces) may occur.

In the revered and deep treatise on physiological 
optics by Helmholtz, there is a reference to “ellipsoi-
dal refracting surface” (volume I, p. 194)13, but its 
content is subject to aberrations occurring in refrac-
tion by the surface of an ellipsoid (such as that of 
an astigmatic cornea), describing the geometric figure 
that is modernly known as the “Sturm’s Conoid.” In 
fact, Helmholtz duly credits this author in the pre-
vious chapter of the same volume, although followed 
by a corrective remark14: “Aberrations of the kind that 
Sturm supposes actually do seem to occur in most 
human eyes, and the phenomena dependent on them 
will be described; where, however, it will be shown 
that the interval between the two focal planes is by 
no means so important as STURM thinks and that, 
instead of promoting the clearness of vision, this de-
fect in the eye tends rather to impair it.” It should be 
noted that even Allvar Gullstrand-who was awarded 
the Nobel Prize in Physiology or Medicine in 1911, 
precisely for his studies on ocular dioptrics-invited to 
review this monumental work by Helmholtz and to 
enrich it with the insertion of his perspicacious notes 
and appendices, does not dwell on the subject, nor 
does it mention ellipses and their optics28.

In short, the lack of explicit references to refrac-
tion on elliptical surfaces appears to justify its’ suc-
cinct presentation, in order to eventually arouse inte-
rests in its’ further deepening.

Refraction by spherical surfaces
Spheres offer great simplicity in the study of re-

fraction, given their curvature remains constant at 
any point, i.e., a single center through which all nor-
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mal lines pass, which are also perpendicular to any 
tangents of its surface. The flat sections of a sphere 
are circles with different radii of curvature, the maxi-
mum value of which corresponds to that of the equa-
torial diameter.

The fact that there exists only one center (C) allows 
relative measurement of its radius of curvature (R) 
from its surface and the distances from the center to 
an object point (p) and that to its respective image, 
as a function of the angle of incidence (i). Note that 
because one considers a point object, regardless of its 
position in space relative to the spherical surface, the 
object can always be considered to be on the same 
line that contains its center of curvature, i.e., on a 
respective optical axis. Figure 2 shows that applying 
the law of sines to OPC and CIP triangles respective-
ly results in

 [OP/ sin (i − a)] = [OC/ sin (180 − i)] 
 [IP / sin [180 - (i - a)] = [IC / sin r] 

Given sin [180 − (i − a)] = sin (i − a) and  
sin (180 – i) = sin i, (OP sin i) / OC = IP sin r /IC → 

sin (180 – i) = sin i, then  
(OP sin i) = (IP sin r) / IC →  

(nr / ni) = (IP. OC)/(OP. IC) (F. 04)

This geometric representation (F. 04) can be trans-
formed into the variables of their respective meanin-
gs, i.e., the distances p, s, and R and the coordinates 
of point P, since

IP = [y2 + (s - R + x)2]½, OC = (p + R),  
OP = [y2 + (p + R - x)2]½, IC = (s - R).

Thus, (nr - ni) = {[y2 + (s - R)2 + 2 (s - R).x + x2]½. 
(p + R)} / {[y2 + (p + R)2 - 2 (p + R).x + x2]½. (s - R)}

 From the equation of circles, x2 + y2 = R2; thus,

(nr/ni) = {[R2 + (s - R)2 + 2 (s - R).(R2 - y2)½]½.  
(p + R)} / {[R2 + (p + R)2 - 2 (p + R).(R2 - y2)½ ]½ 

(s - R)}(F. 05) 

i.e., given the values of the variables y (point of 
incidence “height,” relative to the optical axis) and 
R (radius of a surface’s curvature), a second-degree 
equation can be derived to calculate s (depending on 
p), or of p (as a function of s).

In any case, this formulation, although generic, is 
avoided. Instead, the paraxial ray equation is prefer-
red, which implies a negligible incidence angle value 
(incidence “coincident” to the optical axis). In fact, if 
y = 0, 

 (nr / ni) = {[R2 + (s-R)2 + 2 (s - R).R]½ (p + R)}/ 
{[R2 + (p + R)2 - 2 (p + R).R]½(s - R)}  

→ (nr / ni) = [s (p + R)] / [p (s − R)] (F. 06)

Even more common is the formula resulting from 
a development of the above.

 p (s - R). nr = ni. s (p + R) →  
(nr - ni) s. p = R [(s. ni) + (p. nr)] → 

 [(nr - ni) / R] = [(s. ni) / (s. p)] + [(p. nr) / (s. p)] → 
 [(nr - ni) / R] = F = (ni / p) + (nr / s) (F. 07)

An F-value is a surface’s focal power and is ex-
pressed in the optical unit diopters (with the symbol D) 
when the radius of curvature (R) is quantified in me-
ters. It is constant for each spherical surface for it de-
pends on invariable values: the radius of curvature of 
the surface (R) and the refractive indices of the media 
separated by it (ni, of the incidence medium, and nr , 
of the refractive medium).

Another simplification of the generic formula (F. 
05) is to consider an object’s position at an infinite 
distance. Hence,

 (nr / ni)
2 = {[R2 + (s - R)2 + 2 (s - R).(R2 - y2)½]½ /  

(s - R)2

a quadratic equation for the value (s − R), dependent 
on the variable y. Solving the second-degree equation:

 (s - R) [(nr)
2 - (ni)

2] / ni = (ni). (R
2 - y2)½ +  

[(R. nr)
2 - (y. ni)

2]½ (F. 08)

 In this case, y = R sin i:

 (s - R) [(nr)
2 - (ni)

2] / R. ni = (ni. cos i) +  
[(nr)

2 - (ni. sin i)2]½ (F. 09)

This formula is very important because it shows 
that rays parallel to the optical axis (i.e., effectively 

Figure 2. Schematic representation of refraction at a point P over 
a spherical surface’s section with center in C and curvature radius 
PC = AC = R. The radiation has a source object (O) whose distance 
from point A of the surface is AO = p. The image of O forms at 
position I, whose distance to the surface’s apex (A) is AI = s. The 
coordinates of P(x, y) are given by x = BC, y = PB.



Refraction of elliptical surfaces

eOftalmo. 2021;7(2):58-84.
 

63

eOftalmo

coming from an infinite distance) reach the surface 
at different heights relative to the optical axis (y) and, 
or, with different values of the angle of incidence (i), 
will produce images at different distances (s) from the 
surface, that is, a longitudinal spherical aberration. 
For example, table 1 shows that s values depend on 
those of y, for nr = 1.5, ni = 1.0, R = 20 cm.

In other words, energy reaching a surface does not 
concentrate on a single point (focus) but rather dis-
perses over a space whose boundaries are contained 
by a surface called caustic (Figure 3).

Aspherical surfaces
The undesirable condition of spherical aberration 

makes it desirable to seek another surface that can 
concentrate refracted energy at a single point (the 
image focal point, that of the image distance of an 
object situated on the optical axis and infinite distan-
ce; s = 60 cm Table 1 example), all the energy inci-
dent on the surface. This is equivalent to searching 
for surfaces whose radii of curvature are progressive-
ly larger, i.e., less sharp curvatures. In other words, 
determining the specific radius of curvature (Ry) for 
each height relative to the optical axis (y) could ena-
ble the image of the object to coincide with the image 
corresponding to the incidence i = 0°.

Therefore, it boils down to rearranging the same 
F. 09, but by switching the sought variable, which is 
the value of the curvature radius (Ry) such that the ima-
ge position is always the same (s = 60 cm, Table 2). 
To facilitate the calculation of R according to the 
other variables, F. 09 must be rearranged to

 Ry = [nr (nr + ni) R0] / {(nr)
2 - (ni)

2 (1 - cos i) +  
ni [(nr)

2 - (ni. sin i)2]½} (F.10)

Figure 4 illustrates tables 1 and 2, which show 
the variation of an image’s position according to the 
height relative to the optical axis in which the inci-
dence of a radius is parallel to it (Figure 4A); further, 
it conversely shows the curvature radius variation re-
quired for an image to always form on the same point 
(Figure 4B). 

Table 1. Distances from image position (s) relative to a spherical 
surface with radius of curvature (R) equal to 20 cm, separating 
the incidence medium (ni = 1.0) and refractive medium (nr = 1.5) 
according to the angle of incidence (i). Incident rays are considered 
parallel to the optical axis.

Angle of incidence (i) Image position (s)

0º 60.000

10º 59.596

20º 58.403

30º 56.484

40º 53.941

50º 50.919

60º 47.596

70º 44.179

80º 40.881

90º 37.889

Figure 3. Representation of refraction on a spherical surface section. 
Incident rays parallel to the optical axis (object at an infinite distance) 
project images at different distances from the surface: the closer to 
it, the further away from the optical axis are the respective incident 
rays. Because of this “spherical aberration”, the incident energy 
disperses in a space delimitated by a new surface (called caustic) 
pictorially shown as a red line, in the section considered. Caustic is 
the envelope of infinite images (formed by the crossing of refracted 
rays) and formed by the crossing of refracted rays originating from 
infinitely close incident rays.

Table 2. Relationship of the different radii of curvature of a surface 
separating media with refractive indices ni = 1.0 and nr = 1.5 for 
each incidence of rays parallel to the optical axis, such that the 
distance from the image to the surface is identical (s = 60 cm) to 
that produced by zero incidence (R0 = 20 cm).

Angle of incidence (i) Radius of curvature (Ry)

0º 20.000 cm

10º 20.136 cm

20º 20.547cm

30º 21.245 cm

40º 22.246 cm

50º 23.567 cm

60º 25.212 cm

70º 27.162 cm

80º 29.353 cm

90º 31.672 cm
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The underlying principle of table 2 raises some 
remarks, as explained in figure 5. In fact, the distance 
at which the image of a null incidence (i = 0°) formed 
by the surface with center C and radius of curvature 
AC = RA is formed is AI = s. A surface with a greater 
radius of curvature, RB = BC, with the same center of 
surface A, forms the image for incidence i = 90° at 
the same location (I). However, for this to occur, its 
apex (the position in which the surface is cut by the 
optical axis) must be at B0, a place which does not 
coincide with that of the apex of the anterior surface 
that generated the first image (A). If there these api-
ces coincided (in A), the curve of that surface would 
describe arc AB’, its center of curvature would not be 
C, but C’ and the position of the image would be at 
I’ (Figure 5). Thus, in order for the apices to coincide 
(at A), as much as the centers of curvature (at C), the 
drawing of curves with images formed in the same 
location (I), without the so-called “spherical aberra-
tion,” must follow another curve (line interrupted 
between A and B in Figure 5).

In fact, there are several curves with increasing 
or decreasing progressions of the curvature radii at 
each of its points. Ellipses are those that enable the 
adjustment of refractive variables (refractive indices 
between the media separated by the surface and va-
riable radii of curvature) such that refracted rays are 
always formed at the same “focal” point (Figure 6). 

Figure 4. (A) Left: representation of the relationship between angles 
of incidence of rays parallel to the optical axis at different heights 
(abscissa) and the distance from the surface at which the respective 
image is formed (ordinate), on a spherical surface of radius of 
curvature 20 cm, separating media with refractive indices ni = 1.0 
and nr = 1.5. (B) Right, representation of the relationship between 
incidence angles parallel to the optical axis at different heights of it 
(abscissa) and the radius of curvature of the surface at the respective 
points, so that the image is always formed over the same optical axis 
location (ordinate) (Data in Table 2).

Figure 5. Representation of two curves, with the same center C, 
one with radius of curvature AC = RA and the other with radius of 
curvature B0C (RB, greater than RA), such that the refracted rays : (a) 
of an object at infinite distance, perpendicular to point A of the first 
and (b) tangent to point B of the second, produce an image in the 
same optical axis location (I). If the curves were coincidental to their 
apexes, the curvature center of the second would move to position C’ 
and the image of point B’ would be formed at I’

In fact, unlike spherical surfaces in which refrac-
tion aberration appears, precisely because of their 
constant radius of curvature, on elliptical surfaces an 
increasing or decreasing progression of these radii of 
curvature can be observed (Figure 7), determining 
either an accentuation of those aberrations, or their 
reduction until they are canceled and reverted. Thus, 

Figure 6. Schematic depiction of the refraction of incident rays 
parallel to the optical axis (AOI line) of an elliptical surface (black 
continuous stroke in the left half and dotted on the right), separating 
media with refractive index ni = 1.0 and nr = 1.5. Vertex A of the ellipse 
is the one with the highest curvature (shortest radius), corresponding 
to an imaginary circle with a center in CA; vertex B is the one with 
least curvature (greater radius) corresponding to an imaginary 
circle with center in CB. in this case, the points of the ellipse surface 
have progressive intermediate curvature radii, between them, (or 
“regressively,” in another condition). All refracted rays cross point I 
(focus image of the elliptical surface).
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a single specific shape (for each pair of optical me-
dium separated by the surface) is the one that relates 
to the condition of non-aberration of sphericity, al-
though strictly speaking, all of them are aspherical, 
that is, non spherical (Figure 8). 

One of the distinctive mathematical traits of the 
ellipses is their eccentricity-a value that correspon-
ds to their deformation relative to the circle. (The 
circle’s eccentricity is zero.) However, the eccentri-
city of an ellipse cannot be directly associated with 
an aberration type, since the same ellipse (thus, the 
same eccentricity) can relate to the optical axis in se-
veral ways. In fact, ellipses O and A (Figures 7 and 8) 
are identical in their eccentricities, but differ when 
relating to the optical axis, with the longest of their 
axes in the horizontal plane (curve A) or to the smal-
lest (curve O), which effects on refraction are com-
pletely different. Note that the inverse occurs for the 
curvature radius of the horizontal apical point: the 
shortest curvature radius is that of curve A and the 
longest is that of O.

Figure 7. Family of closed curves, ellipses (O, A and the two named 
P) and circle (E). One of them corresponds to an aspherical curve 
(A, longer horizontal axis) which, is identical to “O” (longer vertical 
axis), only its presentation’s position varies . Curve “O” is called an 
oblate whereas “A” and “P” are prolate forms. (The curves between 
“A” and “E,” such as the green “P,” are simply called prolates; “A” is an 
aspherical prolate; whereas those with even more flattened shapes, 
such as the red “P,” are called hyperprolates.)

Figure 8. Schematic representation of refraction by different sur-
faces, separating an incidence medium (with a lower refractive 
index) from another (with a higher index). (c): In spherical (E), 
aberration is considered positive: the greater the distance between 
the optical axis and the incident rays parallel to it, that is, the more 
peripheral the incident rays are, the closer to the surface their 
respective images are. (a): On a surface which curvature radii are 
progressively shorter for incidence points occurring farther from 
the optical axis (O), this aberration (positive) increases. (b): The 
aberration decreases when the curvature radii become progressively 
longer, (d): it is annulled in a specific condition (no spherical 
aberration); and (e): it is reversed, in relation to the aberration of the 
spherical surface, i.e., it presents a negative aberration. The most 
“open” curves (O) are called oblates whereas the most “closed” are 
called prolates, among which is the aspherical (A).

The semantic issue of asphericity
Obviously, whether by increasing or decreasing 

variations of the curvature radii, all resulting curves 
are “non-spherical”, or “aspherical”.All curves produ-
ce refractional aberration by the surface’s shape, with 
the exception of one. This special optical surface is 
termed as “non-aberrant” or “inaberrant.” Thus, the 
most appropriate terminologies to define the type of 
aberration are superaberration (positive) when this 
aberration is increased with respect to spherical aber-
ration (curve O, Figure 8a), subaberration when it is 
reduced (P, Figure 8b), simply “inaberration” when 
there is no aberration (curve A, Figure 8d), and con-
traberration (negative) when it reverses direction 
(curve P, Figure 8e). Oblate curves are always supe-
raberrant, whereas prolates may be subaberrant 
(Figure 8b), inaberrant (Figure 8d), or contraberrant 
(Figure 8e). There is therefore no reason to say that 
inaberrant surfaces are prolate, for despite this being 
true, it represents a particular case: not every prolate 
curve is inaberrant. 

The geometry of ellipses
Other elements of the ellipse geometry are not 

shown in figure 9, but in figure 10. In ellipses, becau-
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se the distance between B1 (or B2) and one of the foci 
(G or Q) equals the length of the major semiaxis (a), 
the following relationship between variables a, b, and 
f becomes evident:

 a2 = b2 + f2 (F. 11)

 The ellipse’s canonical equation, which relates 
the Cartesian coordinates of one of its points P(x, y) 
in relation to the origin of the measurement system 
(simplifiedly taken as the center of the ellipse), can be 
deduced from figure 9’s elements as follows:

 (x / a)2 + (y / b)2 = 1 (F.12)

Another relationship is the one defining the 
ellipse’s eccentricity (e):

 e = f / a (F. 13)

This value (of eccentricity, e) distinguishes the 
so-called conical sections, namely
(a) The circle (e = 0) obtained by the flat section of 

the cone perpendicular to its main axis.
b) The ellipses (1 > e > 0) obtained by the flat sec-

tion of the cone inclined relative to its main axis 
but crossing it.

c) The parabola (e = 1) obtained by the flat section 
of the cone, parallel to one of its geratrices (lines 
connecting the apex to the base).

d) The hyperbolas (e > 1) obtained by the flat sec-
tion of the cone, parallel, or inclined to its main 
axis, but without crossing it.

The relationship of the Cartesian coordinates of a 
point P (x, y) in a system which origin is the center of 
the O ellipse (0.0) is given by

 OP = [x2 + y2]½ = (y / sin θ) = (x / cos θ) →  
y. cos θ = x. sin θ (F. 14)

By replacing y of F. 14 in the canonical ellipse 
equation (F. 12), we get

 x2. b2 + y2. a2 = a2. b2 →  
x2. b2 + a2[(x2. sin2 θ) / (cos2 θ)] = a2. b2 → 

 x2 [(b2 cos2 θ) + (a2 sin2 θ)] = (a2. b2) cos2 θ → 
 x = (a. b. cos θ) / [(b2 cos2 θ) + (a2 sin2 θ)]½ (F. 15)

Similarly,

 y = (a. b. sin θ) / [(b2 cos2 θ) + (a2 sin2 θ)]½ (F. 16)

Therefore, the distance from the point (P) to the 
ellipse’s center (O), i.e., the OP distance is given by

 OP = [x2 + y2]½ = (a. b) / [(b2 cos2 θ) +  
(a2 sin2 θ)]½ (F. 17)

A very important condition is that the normal at 
each point of the ellipse (i.e., the line perpendicular to 
the tangent of the ellipse at that point) is the bisector 
of the angle between the lines between it (P, Figure 
10) and the foci of the ellipse (G and Q). That line 
(PM, Figure 10) defines angular relationships (j and g, 
in the GPM triangle), by which the angle of incidence 
(i) and the angle of refraction (r) at a point on the 
surface will then be considered.

Figure 9. Pictorial representation of an ellipse, with its main ele-
ments: A1 and A2, vertices of the major axis (A1A2 = 2 a); A1O = OA2 
= a, semimajor axes; B1 and B2, the minor axis’ vertices (B1B2 = 2 b); 
B1O = OB2 = b, semiminor axes ; F1 andF2, foci of the ellipse; F1F2 = 
2 f, interfocal length; F1O = OF2 = f, interfocal semidistances. The 
distances between the foci and the respective apices of the minor 
axes coincide with the length of the longer semiaxis (F1B1 = B1F2 = 
F2B2 = B2F1 = a). The sum of the distances from any point of the 
ellipse (e.g., P1, P2, P3, P4, P5, or any other) to both foci (F1 and F2) 
always equals the major axis’ length (F1P1 + P1F2 = F1P2 + P2F2 = F1P3 
+ P3F2 = F1P4 + P4F2 = F1P5 + P5F2 = 2 a). Point “O” at the middle of 
the major and minor axes is the center of the ellipse.

Figure 10. Representation of the ellipse’s geometric relationships. 
The normal at one point on the surface (P) is the bisector of the angle 
formed between the lines connecting it to each of the foci (G and Q).
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Consequently, relationships can be established 
for the GPM and MPQ triangles:

 GP / (sin j) = PM / [sin 180 - (j + g)] =  
MG / (sin g) (F. 18)

 QP/[ sin (180 − j)] = PM/[ sin (j − g)] =  
MQ/ (sin g) (F. 19)

A number of developments may originate hence-
forth. Note that

 GP + PQ = 2 a (F. 20)

 GM + MQ = 2 f (F. 21)

Let us consider the values of GM and MQ from F. 
18 and F. 19, respectively:

 GM + MQ = 2 f =  
[GP (sin g) / (sin j)] + [PQ (sin g) / (sin j)] → 

 2 f = [2 a ( sin g) / (sin j)] →  
f / a = e = ( sin g) / (sin j) (F. 22)

 From F. 18, F. 19, and F. 20:

 GP + PQ = 2 a =  
[(PM. sin j) / sin (j + g)] + [(PM. sin j) / sin (j - g)] → 
 2 a = (PM. sin j). {[1 / sin (j + g)] + [1 / sin (j - g)]} → 

 2 a = (PM. sin j). {[ sin (j - g)] + [sin (j + g)]} /  
{[ sin (j - g)]. [sin (j + g)]} → (2 a) / (PM. sin j) =  

[(sin j)(cos g) – (cos j)(sin g) + (sin j)(cos g) + (cos j)(sin g)] /  
[(sin j)(cos g) – (cos j)(sin g)] . [(sin j)(cos g) + (cos j)(sin g)] →

(2 a) / (PM. sin j) =  
2 (sin j)(cos g) / {[( sin j)(cos g)]2 - [(cos j)( sin g)]2} →  

 a {[(sin2 j)(1 - sin2 g)] - [(1 - sin2 j). (sin2 g)]} = 
PM (sin2 j) (1 - sin2 g)½ →  

 a {[( sin2 j) -( sin2 j)( sin2 g)] - [(sin2 g - (sin2 j)( sin2 g)]} =  
PM (sin2 j) (1 - sin2 g)½ →  

a [(sin2 j) - (sin2 g)] = PM (sin2 j) (1 - sin2 g)½ →

Replacing the sin g value of F. 22,

 a [(sin2 j) - (e2 sin2 j)] = PM (sin2 j) (1 - e2 sin2 j)½ → 
 a (1 - e2) = PM. (1 - e2 sin2 j)½ (F. 23)

The (1 - e2) = k set can be useful to simplify equa-
tions, as shown next. In any case, F. 23 gives the va-
lue of j according to that of PM (or vice versa). Given 
sin j = y / PM, then

 a (1 - e2) = y (1 - e2 sin2 j)½ / sin j →  
a2 (1 - e2)2 sin2 j = y2 (1 -e2 sin2 j) → 
(sin2 j) [y2.e2 + a2 (1 - e2)2] = y2 →  

sin j = y / [y2.e2 + a2 (1 - e2)2]½ (F. 24)

and therefore,

 PM = [y2.e2 + a2 (1 - e2)2]½ (F. 25)

Equation F. 17 (and similarly, F. 15 and F. 16) can 
be rewritten as a function of k = 1 - e2 :

 OP = a.b / [(b2 cos2 θ) + (a2 sin2 θ)]½ =  
a. (a2 - f2)½ / {[(a2 - f2) cos2 θ) + (a2 sin2 θ)]}½ =  

a. (a2 - a2e2)½ / [a2 - (a.e)2 cos2 θ]½ =  
a. a (1 - e2)½ / [a2 (1 - e2 cos2 θ)]½ =  
a (1 - e2)½ / [(1 - e2) + e2 sin2 θ]½ → 

 OP = a [k / (k + e2 sin2 θ)]½ (F. 26)

The equation for the radius of curvature at one of 
the points P on the surface (RP) is

 RP = (a. b)2 / {[(a cos j)2 + (b sin j)2]3/2 (F. 27)

which leads to the conclusion that for one of the 
vertices of the major axis (j = 0°),

RA = (a2. b2) / a3 → RA = b2 / a (F. 28)

whereas for one of the vertices of the minor axis 
(j = 90°),

 RB = (a2. b2) / b3 → RB = a2 / b (F. 29)

The location of the curvature’s center in relation 
to each of the points on the surface will be conside-
red later; nevertheless, the relationships on the re-
fraction of a curve without spherical aberration can 
be exemplified.

Refraction on a surface without spherical aberration
Consider an object point located at an infinite dis-

tance from a surface that separates two media, those 
of the incidence and of the refraction, with refractive 
indices ni and nr, respectively (nr > ni). Consider “A” 
a point on this surface where the incident radiation 
occurs and let q be a finite distance, from A, whe-
re the image (Q) of an object at an infinite distance 
is formed.This means that the considered surface is 
curved (since for a flat surface of an infinite radius of 
curvature , the Q image of an object at infinite distan-
ce would also form at infinite distance). Regardless of 
this surface’ shape (spherical, elliptical, or any other), 
the calculation of the image’s position (Q) is obtained 
from the premise that a radius of curvature can be  
attributed to the surface’s point “A,” equivalent to 
that of a spherical surface, as suggested by figure 6.

Let be RA the radius of curvature at this point (A) 
of the surface. By the formula of refraction on a sphe-
rical surface, the relationship between the image’s 
position, relative to A (i.e., q) and the radius of curva-
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ture (RA) can be established according to the respecti-
ve refractive indices (ni an nr) as

 (RA / q) = (nr - ni) / nr (F. 30)

which can be rewritten according to the focal power 
assigned to surface (F):

 F = (nr - ni) / RA = nr / q

Hence,

RA = (nr - ni) / F = (nr - ni) q / nr (F. 31) 

The spherical non-aberration condition of this 
surface presupposes that any point P of that surface 
has the image of the object(located at the infinite dis-
tance) formed exactly over Q, i.e., coinciding with it. 
The direction of the incidence of radiation on P is the-
refore parallel to the direction of incidence on point 
A. By the normal line to point P and (still) regardless 
of the surface’s shape, the geometric relationships of 
this coincidence can be established (Figure 11).

Hypothesizing that G and Q are the foci of an 
ellipse to which P belongs, the following relationships 
will apply to triangles GPM and MPQ, respectively:

 (GM / sin r) = (GP / sin i) and  
[PQ / sin (180 - i)] = (MQ / sin r)

Hence,

 GP + PQ =  
[(GM sin i) / sin r] + [(MQ sin i) / sin r] =  

(GM + MQ) (sin i) / sin r

Since in ellipses, GP + PQ = 2 a, i.e., the sum of 
the distances from the considered point (P) to each 

focus (G and Q) equals the length of the ellipse’s ma-
jor axis; and GM+ MQ = 2 f. Thus,

 2 a = 2 f (sin i) / sin r → a / f = nr / ni

Since (f/ a) = e measures the ellipse’s eccentricity, 
the fundamental relationship is established between its 
“shape” (described by its eccentricity, e) and the rela-
tionship between the refractive indices of the media 
considered, such that the incidence of parallel rays on 
any points on this surface (i.e., all) produce refracted 
rays that converge to a single point (Q), one of the 
ellipse’s foci: 

 e = f / a = ni / nr (F.32)

In other words, for a curve to not exhibit spheri-
cal aberration, it must be elliptical and of an eccen-
tricity that corresponds to the ratio of the refractive 
indices of the incidence and refractive media sepa-
rated by it.

Once this condition is satisfied, infinite surfaces 
may exist, each with the specific focal length (AQ = 
q) that is a function of the radius of curvature of the 
apical point of the major axis (A), i.e., RA, whose va-
lue has already been defined (F. 30 and F. 31). Thus, 
in figure 11, as AG = a − f, the generically formula-
ted focal length is the following:

q = AQ = AG + GQ = (a- f) + 2 f = a + f = q (F. 33)

Finally, the variables of the ellipse can be deter-
mined from q (image focal length ) or F (surface’s fo-
cal power), conventionally taken with respect to the 
curvature radius of the apical point of the ellipse’s 
major axis (RA). Hence, for the length of the ellipse’s 
semimajor axis (a),

 a + (a. ni)/ nr = q → a = q. nr / (nr + ni) (F. 34)

or a + (a. ni)/ nr = nr / F → a = (nr)
2 / (nr + ni). F (F. 35) 

For the semifocal axis length (f),

 f = q - a = q - [q. nr / (nr + ni) →  
f = q. ni / (nr + ni) (F. 36)

or f = nr. ni / (nr + ni). F (F 37)

For the semiminor axis (b),

b2 = a2 - f2 =  
[q. nr / (nr + ni)]

2 - [q. ni / (nr + ni)]
2 =  

q2 [(nr)
2 - (ni)

2] / (nr + ni)
2 =  

q2 (nr + ni) (nr - ni) / (nr + ni)
2 →  

b = q [(nr - ni) / (nr + ni)]
½ (F. 38)

or b = [(nr - ni) / (nr + ni)]
½.( nr / F) (F. 39)

Figure 11. Refraction of parallel rays (object at infinity) from two 
points at the same plane of a curved surface (A and P). C is the center 
of curvature of an imaginary sphere tangential to A. Q is the image 
of the object formed on the ACQ axis. If Q is one of the foci of an ellipse, 
then the other is G, such that the PM line (normal to point P) is the 
angle bisector of GPQ.
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Other relationships between these variables can 
also be obtained (for example, a - f or a / b, etc.). 
Table 3 summarizes those formulations for surfaces 
without spherical aberration.

Some relationships are purely dependent on the 
ellipse itself, such as the eccentricity (e) that defines 
it, or others that can be deduced from the formulas 
already presented:

RA = b2/ a → RA / b = b / a (F. 40)

RB = a2/ b → RB / a = a / b (F. 41)

a / b = (RB / a) / (b / RA) → RA. RB = a. b (F. 42)

As a numerical example, consider a surface se-
parating two media, with refractive indices of 1.0 for 
incidence (ni = 1.0) and 1.5 for refraction (nr = 1.5). 
To determine the eccentricity of the (elliptic) curve 
such that it does not produce spherical aberration, 
e = ni/nr = 1.0/1.5 = 0.666… Be the radius of cur-
vature at the apical point of its major axis equals to 
20 cm (RA = 20 cm). The focal power of this surface 
(object located at an infinite distance from the sur-
face) is F = (1.5 − 1.0) /0.2 m = 2.5 D. The image 
focal length of this surface is q = 1.5/ F = 1.5/2.5 = 
0.6 m = 60 cm. In this curve, the semimajor axis (a) 
is then (calculation that can be done, alternatively, 
either from q = 60 cm, or from RA = 20 cm, or from 
F = 2.5 D), a = 36 cm (or 0.36 m, if the calculation 
is done by the formula containing the F-value). The  
semifical axis is f = 24 cm. The semiminor axis is  
b = 720½ ≈ 26.833 cm and the radius of curvature of 
the apical point of the minor axis is RB ≈ 48.299 cm. 
By Snell’s law, assuming an incident radius parallel 
to the optical axis and tangentiating this apical point 
of the minor axis (a purely mathematical conjecture), 
we have

 (sin i) / (sin r) = (1 / 1.5) = f / a 

for f = 24 cm and a = 36 cm, expressing the ec-
centricity ratio of this curve. Obviously (a − f) = 12 cm, 
whose calculation can be confirmed by any formulas 
presented for the variable (a - f) in table 3.

Table 4 summarizes values of the variables of cur-
ves without spherical aberration, according to the re-
fractive index nr, in case the medium of incidence is 
air (ni = 1.0).The calculations for the above mentio-
ned example (q = 60 cm and Figure 12) correspond to 
those in the third row of table 4 (nr = 1.500).

A very important relationship is the eccentrici-
ty of the curve, such that it does not show spherical 
aberration when the incidence medium is air. In this 
case, ni = 1.0 and the expression of eccentricity is 

Table 3. Formulations for the variables of a curve without spherical aberration (elliptical), depending on the values of the radius of curvature 
of the apical point of its major axis (RA), or on the respective image focal power at that point (F), or on the corresponding image focal distance (q).

Variable As function of q As function of F(*) As function of RA

Radius of Curvature (RA) q (nr – ni) / nr (nr – ni) / F 

Semimajor axis (a) q . nr / (nr + ni) (nr)
2 / (nr + ni) . F RA (nr)

2 / [(nr)
2 – (ni)

2]

Semiminor axis (b) q [(nr – ni) / (nr + ni)]
½ (nr / F) [(nr – ni) / (nr + ni)]

½ RA . nr / [(nr)
2 – (ni)2]½

Semifocal distance (f) q . ni / (nr + ni) nr . ni / (nr + ni) . F RA . nr . ni / [(nr)
2 – (ni)

2]

Radius of curvature (RB) q (nr)
2/(nr+ni) [(nr)

2–(ni)
2]½ n3 /(nr+ni) [(nr)

2– (ni)
2]½ F RA (nr)

3 / [(nr)
2– (ni)

2]3/2

a-f q (nr– ni) / (nr + ni) nr (nr – ni) / (nr + ni) F RA . nr / (nr + ni)

(*): In considering F values (in diopters), distances are necessarily expressed in meters. In other cases, values are expressed in the same measurement unit (of q, or RA).

Figure 12. Graphic representation of an elliptical curve without any of 
the spherical aberration’s characteristic elements. A1 and A2, poles of 
the major axis; B1 and B2, poles of the minor axis; G and Q: ellipse’s 
foci; O: center of the ellipse; CA: center of the osculating circle of 
point A1; A1CA = RA, radius of curvature of point A1; CB: center of the 
osculating circle of pole B1; B1CB = RB, radius of curvature of point 
B1 . Note that at this point (B1) the refracted ray corresponds to an 
incidence of 90°, and therefore, tan r = tan 41.8103° = (OQ = f) / 
(OB1 = b); or sin 41.8103° = f/a; or, also, cos r = b/a. (The scale of 
representation maintains the variables’ actual proportions.)
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expressed by the inverse of the index of refraction of 
the refractive medium (nr), that is, e = 1/nr. Recipro-
cally, e-1 = nr = a / f. This is an interesting simplifi-
cation for it shows the perfect linearity between the 
index of refraction nr and the relationship between 
the lengths of the major axis (2 a) and the interfocal 
distance (2 f) of the surface without spherical aber-
ration (Figure 13).

2) Draw the normal line NN perpendicular to the 
surface tangent (TT) at the point considered (P). 
NN will contain the center of curvature of the 
surface at that point (P).

3) At the crossing point of the normal line (NN) 
with the major axis of the ellipse (A1A2), a point 
(M) is defined. By M, is drawn a line parallel to 
the tangent (TT), i.e., the SS line.

4) From the crossover point of the SS line with the 
line that joins point (P) to the farthest focus (Q), 
line PQ, i.e., point U, is drawn a perpendicular to 
the PQ direction (considered to be the refracted 
ray), line ZZ.

5) At the intersection of line ZZ with the normal 
line to point P (line NN), the center of the oscula-
ting circle to point P (point CP) is located. PCP = 
RP is the radius of curvature of that circle.

Table 4. Elements of an elliptical curve without spherical aberration, depending on the surface’s image focal length (q) and on the index of 
refraction of the refractive medium (nr), when ni

 = 1.0.

nr e RA RB f a b

1.333 0.750 0.250 q 0.864 q 0.429 q 0.571 q 0.378 q

1.400 0.714 0.286 q 0.834 q 0.417 q 0.583 q 0.408 q

1.500 0.667 0.333 q 0.805 q 0.400 q 0.600 q 0.447 q

1.600 0.625 0.375 q 0.788 q 0.385 q 0.615 q 0.480 q

1.700 0.588 0.412 q 0.779 q 0.370 q 0.630 q 0.509 q

1.800 0.556 0.444 q 0.773 q 0.357 q 0.643 q 0.535 q

1.900 0.526 0.474 q 0.771 q 0.345 q 0.655 q 0.557 q

2.000 0.500 0.500 q 0.770 q 0.333 q 0.667 q 0.577 q

Figure 14. Pictorial representation of the process for determining 
CP, the center of the osculating circle (in violet, dotted line) to point 
P. From U, the meeting place of a line (SS), parallel to the tangent 
(TT) to the point P, with the direction PQ (assumed, incidentally, to 
be that of the refracted ray), a perpendicular is drawn (ZZ), which 
when meeting the normal (NN) to the considered point, determines 
the center CP. Thus, the radius of curvature corresponding to point P 
has the length PCP.

Figure 13. The eccentricity of an ellipse (e) which does not show 
spherical aberration is reciprocally related to the index of refraction 
of the refractive medium (nr) when the incidence medium is air 
(ni = 1.0).

Positioning the center of curvature
Figure 14 shows the procedures that graphically 

determine the position of the center of curvature of 
any point on an elliptical surface:
1) Draw the tangent line (TT) to the point of the 

surface (P) which center of curvature is to be de-
termined.
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it comes y = 20.06115396 cm), results sin i = 1.5 y / 
(900 + y2)½, and thus, i = 56.49204167°. (Note that 
this result can also be obtained from F. 24, when j = i.)

 The value of the “apparent” radius of curvature 
(PM = RM, Figure 15 and F. 44) can then be calculated 
as PM = RM = 20.06115396 / sin 56.49204167° = 
24.05964716 cm (result also identical to that obtai-
ned by F. 25). The true radius of curvature (PCP = RP) 
is easily calculated from the PUCP and PMU trian-
gles, respectively:

 UP = RP. cos r = PM / cos r → RP = RM / cos2 r (F. 48)

from which RP = 34.81831666 cm.
Hence, the values of the coordinates of the center 

of curvature (u and h) can be derived as follows:

 cos i = (x - u) / RP → u = x - RP. cos i (F. 49)

 sin i = [y - (- h)] / RP → h = (RP. sin i) - y (F. 50)

Table 5 shows approximate values (up to the 
third decimal place) of the values of the coordinates 
of a point P (x, y) depending on the angle (θ), those 
of the line (OP) between that point (P) and the cen-
ter of the ellipse (O), the coordinates of the center of 
curvature (u and h), the “apparent” radius of curva-
ture value (PM = RM) and the true (RP) value as well 
as the angle of incidence (i) and that of refraction (r) 
corresponding to the points which coordinates are 
considered.

Table 6 complements table 5, showing (in the pe-
nultimate column) values of the coordinate (m,0) of 
point M, i.e. the “pseudo” center of curvature of point 
P, that is, the place where the normal at that point 

Figure 15 is the reproduction of figure 14, pur-
ged from the elements used to determine point CP. It 
makes it easy to understand the following geometric 
deduction.

The coordinates of the point P and CP are P (x, y) 
and CP (u, h) , respectively. Hence, the radius of cur-
vature (RP) is determined as

PCP = RP = [(y + h)2 + (x - u)2]½ (F. 43)

The relationships between the functions of the 
elliptical curve (a, b, f, RA), the coordinates of one of 
its points (x, y, θ) and the respective functions related 
to refraction (i, r, ni, nr, q, F, etc.) the following formu-
lations are obtained: 

PM = y / sin i (F.44)

From the PGM triangle, by the law of sines,

 (GM / sin r) = PM / sin (i + r) = y / (sin i) sin (i + r)

 From the MPQ triangle, by the law of sines,

 [PQ / sin (180 - i)] = (MQ / sin r)

Yet,

 sin (i − r) = y/PQ

Hence,

 MQ = y. (sin r) / (sin i) sin (i - r)

Finally, since GM + MQ = 2 f,

 2 f = y.( sin r) / { [1 / (sin i) sin (i + r)] + [1 / (sin i) sin (i - r)] } →  
 2 f / y (sin r) = 

{[( sin i) sin (i-r)] + [(sin i) sin (i+r)]} /{( sin2 i)[( sin (i+r)].[ sin (i-r)]} →  
2 f / y (sin r) = 

{[ sin (i-r)] + sin (i+r)]} / {( sin i)[( sin (i+r)].[ sin (i-r)]} →  
[2 f (sin i)] / y (sin r) =  

[2 (sin i) (cos r)] / [(sin2 i).(cos2 r) - (cos2 i).( sin2 r)] →  
f/y (sin r) =  

(cos r) / [(sin2 i). (cos2 r) − (cos2 i). (sin2 r)] 
f / y = ( sin r). (cos r) / [(sin2 i) - (sin2 r)] (F. 45)

Given (f/ a) = (sin r)/(sin i),

→ a / y = ( sin i). (cos r) / [(sin2 i) - (sin2 r)] (F. 46)

Alternatively, the equation can be converted to 
the calculation of i (or r) according to y and a (or f, or 
θ, etc.). Thus, from F. 45,

f2 / y2 = [(ni sin i)/nr]
2 {1 - [(ni. sin i)/nr]

2} /  
{[(sin2 i) - [(ni. sin i)/nr]

2} →  
sin i = (y. ni. nr) / {f2 [(nr)

2 - (ni)
2]2 + (ni)

4. y2}½ (F. 47)

 E.g., for nr = 1.5, ni = 1.0, f = 24 cm, and for y 
for θ = 40° (by F. , being a = 36 cm and b = 720½ cm, 

Figure 15. Illustration of an elliptical curve whose center of curvature 
of a point P (x, y) is CP (u, h).
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crosses the major axis of the curve (its main optical 
axis), given by the equation

m = x - PM cos i (F. 51)

or of its respective distance to the anterior api-
cal point (that is, the distance A1M = Rm, Figure 14). 
Note that Rm corresponds to the value of the true ra-
dius of curvature, when i = 0° (Rm = RA) and the 
value Rm = PM cos i, when 90° > i > 0°. In fact, for 
these cases, m + Rm = x. 

It also shows some variables supporting other 
possible calculations, as well as their relationships. 
In fact, in certain cases, it may be interesting to know 
the value of the distance from each focus to the point 
P (where incidence and refraction occurs), that is, GP 

= d1 and QP = d2 (Figures 14 and 15), as well as the 
result of its sum (always equal to the ellipse’s major 
axis, i.e., d1 + d2 = 2 a = 72.000 cm, in the example 
considered) and of its ratio (d2/d1), incidentally, equal 
to the ratio between the sine of the sum and of the 
difference between the angles of incidence (i) and of 
refraction (r) They may be deduced from figure 15:

 y = [PG (= d1)] sin (i + r) = [PQ (= d2)] sin (i - r) 
 → d2 / d1 = [ sin (i + r)] / [sin (i - r)] ( F. 52)

Finally, it considers the s value, which as expec-
ted, must correspond to distance A1Q (Figure 14), 
that of the surface’s image focal length :

 s = (a - x) + [y / tan (i - r)] (F. 53)

Table 5. Calculated values for the angle of incidence (i) and of refraction (r) on a surface without spherical aberration, separating the media 
of incidence (ni = 1.0) and of refractionj (nr = 1.5), for the points which Cartesian (x and y) and/or polar (θ) coordinates are considered. Also 
shown are the Cartesian coordinates of the respective centers of curvature of each of these points (u and h), as well as the corresponding 
radius of curvature.

θ x y (x2+y2)½ (x – xC) (y – yC) xC yC RM RP i r

0° 36,000 0 36,000 20,000 0 16,000 0 20,000 20,000 0 0

10° 35,033 6,177 35,573 20,288 6,439 14,745 –0,262 20,420 21,285 17,609 11,635

20° 32,349  11,774 34,425 20,740 13,588 11,609 –1,814 21,485 24,795 33,231 21,429

30° 28,460 16,432 32,863 20,555 21,361 7,906 –4,930 22,804 29,645 46,102 28,711

40° 23,908 20,061 31,210 19,222 29,032 4,686 –8,971 24,060 34,818 56,492 33,771

50° 19,089 22,750 29,698 16,704 35,832 2,386 –13,082 25,100 39,534 65,007 37,174

60° 14,230 24,648 28,460 13,242 41,285 0,988 –16,637 25,884 43,356 72,216 39,406

70° 9,426 25,897 27,559 9,138 45,194 0,287 –19,297 26,421 46,109 78,569 40,802

80° 4,691 26,604 27,014 4,656 47,526 0,035 –20,922 26,731 47,753 84,405 41,567

90° 0 26,833 26,833 0 48,299 0 –21,466 26,833 48,299 90,000 41,810

Table 6. Values of the sum and of the difference of angles of incidence (i) and of refraction (r), distances to each of the poles (d1 and d2), 
respective sums (d1 + d2) and ratios (d2 / d1), distances from images formed on the major axis measured from the anterior apical point (s), 
“apparent” radii of curvature (Rm), and the coordinates of the corresponding centers of curvature (m) for incidences of rays originating from 
objects at infinity on points of a surface without spherical aberration, which separates the media of incidence (ni = 1.0) and of refraction 
(nr = 1.5), wherein Cartesian (x and y) and/or polar (θ) coordinates are considered.

θ x y (i + r) (i – r) d1 d2 d1 + d2 d2 / d1 m Rm s

0° 36.000 0 0 0 12.000 60.000 72.000 5.000 16.000 20.000 60.000

10° 35.033 6.177 29.244 5.974 12.645 59.355 72.000 4.694 15.570 19.463 60.000 

20° 32.349 11.774  54.659 11.802 14.434 57.566 72.000 3.988 14.377 17.972 60.000

30° 28.460 16.432 74.813 17.392 17.026 54.974 72.000 3.229 12.649 15.811 60.000

40° 23.908 20.061 90.263 22.721 20.061 51.939 72.000 2.589 10.626 13.282 60.000

50° 19.089 22.750 102.181 27.833 23.274 48.726 72.000  2.094 8.484 10.605 60.000

60° 14.230 24.648 111.622 32.810 26.513 45.487 72.000 1.716 6.325 7.906 60.000

70° 9.426 25.897 119.370 37.767 29.716 42.284 72.000 1.423 4.189 5.236 60.000

80° 4.691 26.604 125.972 42.839 32.873 39.127 72.000 1.190 2.085 2.606 60.000

90° 0 26.833 131.810 48.190 36.000 36.000 72.000 1.000 0 0 60.000
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E.g.: for θ = 40°, the corresponding values are 
(Table 6 ): x = 23.908 cm, y = 20.061 cm, (i - r) = 
22.721°, from which we obtain s = 60.000 cm.

The eccentricity of the curve of no spherical 
aberration as a contingency of the object position

The fact that the eccentricity of an elliptical cur-
ve justifies the absence of spherical aberration in the 
refraction of the image formed by it from incident 
rays parallel to the optical axis does not mean that 
this property applies to other incidences, i.e., to other 
positions of the object in relation to that surface. In 
fact, if an object located at an infinite distance for-
ms an image 60 cm from the surface, as exemplified, 
this corresponds to an anterior apical curvature ra-
dius of the surface (RA) equal to 20 cm, which condi-
tions all geometric variables of the curve (a = 36 cm,  
f = 24 cm, b = 720½ cm, whose relationships are 
typified by the eccentricity e = 0.666…, as demons-
trated for media with refractive indices ni = 1.0 and 
nr = 1.5). Meanwhile, an object at any other distance 
from this apical point will necessarily form its image 
subject to the laws of refraction, at different distan-
ces, as per the expressions F. 06 or F. 07.

 s = q = (nr. p. RA) / [(nr - ni). p - ni. RA] (F. 54)

Thus, under the pre-established conditions for 
the surface without spherical aberration of apical cur-
vature radius RA = 20 cm, nr = 1.5, and ni = 1.0, we 
get p = 120 cm, q = 90 cm. On the same elliptical 
surface previously used as an example, the incidence 
of another incident rays of this object to other points 
of it (such as P, Figure 16) leads to algebraic rela-
tionships, which allow the calculation of the distance 
s at which the image is formed. 

For the LBP triangle, being LA = p, AB = (AO - 
BO) = (a - x), PB = y (taken from the θ = 40° value), 
angle w is determined:

 tan w = y / [p + (a - x)] (F. 55)

from which one obtains w = 8.636 cm. To deter-
mine the direction of the refracted ray (angle r), the 
value of the angle of incidence (i) is required. The 
latter can be determined from the inclination of the 
apparent radius of curvature (PM = RM) or of the true 
(RP) relative to the ellipse’s major axis, i.e., i − w. 
The apparent radius of curvature of point P is known  
(PM = RM). Hence,

 PM = RM = y / sin (i - w) (F. 56)

therefore (i − w) = 56.492°, hence i = 65.128° 
which, by rhe Snell’s law gives r = 37.217°. BQ is 
calculated next, as follows:

 tan (i - r - w) = y / BJ (F. 57)

This results tan 19.275° = 20.061/BJ; thus, BJ = 
57.365 cm. Finally, for the desired unknown value, s 
= AJ = AB + BJ:

 s = (a - x) + [y / tan (i - r - w)] (F. 58)

that is, s = 12.092 + 57.365 = 69.457 cm. For 
other y-values (corresponding to other supposedly 
known values of the coordinate θ), the calculations are 
analogous, leading to the values shown in figure 16. 

In short, the curve whose shape (eccentricity) is 
suitable for nullifying the spherical aberration of ima-
ges of an object located at infinite distance is unable 
to do so if the object is at a finite distance. For a closer 
object, a curve with a greater eccentricity would be 
required. In other words, “asphericity” (condition of 
no spherical aberration) ( which can be defined by the 
eccentricity value of the curve) is not applicable for 
any distance. Moreover, spherical aberration is not 
caused by a presumed spherical surface, but rather it 
is a property inherent to the very nature of refraction. 

Therefore, despite occurring on spherical surfa-
ces, the term “spherical aberration” is absolutely 
inappropriate since it also occurs on elliptical surfa-
ces, even those which can be defined as “aspherical” 
for objects at infinite distances, but do not keep such 
a property for images of closer objects. A more conve-
nient label for such a type of refractive deffect might 

Figure 16. Elliptical surface with no spherical aberration for the 
incidence of rays parallel to its major axis (optical axis of the surface), 
but which shows it for incidences from a finite-distance light source 
(L). Note that, as in the case of a circular (or spherical) surface, the 
farther the distance of the incident ray from the optical axis, the 
closer to the (elliptical) refractive surface the image forms.



Bicas HEA

eOftalmo. 2021;7(2):58-84.
 

74

eOftalmo

be of surface (or diopter) aberration or of aberration 
of surface (diopter) curvature. Curvature aberration 
can simply lead to confusion with “field curvature,” 
which are aberrations of other phenomena.

Calculation of the eccentricities that maintain 
asphericity at finite distances 

The relationship between the cancelation of “sur-
face” (diopter) aberration (“spherical” aberration), 
caused by (1) a certain eccentricity of the curve (ellip-
tical, as has been studied)—in turn dependent on the 
refractive indices of the medium separated by the 
surface—and (2) the object’s distance, which images 
must form on a single point (image “focus” ), regard-
less of the incidence on the surface, can be sought. In 
fact, it is possible to assume that “asphericity” could 
be also obtained for images of objects located at finite 
distances with curves of greater eccentricities. For an 
object at a given distance (for example, p = 120 cm), 
located on the optical axis of any curve that separates 
medium with refractive indices ni = 1.0 and nr = 1.5 
and has a radius of curvature RA = 20 cm at its apical 
point (coincident with the optical axis), i.e., with a fo-
cal power (nr - ni)/RA = 2.5 D, and considering a null 
incidence (i = 0°) it will form the respective image, 
also on the optical axis, always, at the same distance 
(s = 9 ). In any case, although infinites of these cur-
ves are possible, only one elliptic will also have the 
sum a + f = 9, thus extracting a specific value for its 
eccentricity, which can then be calculated.

 If L is the considered light source and if Q is the 
point upon which the image of the refraction produ-
ced by the null incidence is formed, Q will be one 
of the foci of the elliptical curve. Thus, the distance 
from this source (L) to the anterior “pole” (vertex) of 
the ellipse (A), LA = p, is the distance from the ob-
ject to the surface; and AQ = a + f is the distance 
at which the respective image is formed. (Points L 
and Q are supposed to be coaxial to the ellipse’s ma-
jor axis, or optical axis of the surface.) By the law of 
refraction,the paraxial ray equation:

 F = (nr − ni) / RA = (ni / p) + [nr / (a + f)] (F. 59) 

Variables RA (radius of curvature of the anterior 
apical point of the ellipse), a (its major semiaxis) and 
f (its semifocal distance ) are thus automatically re-
lated to the variables related to refraction, ni (index 
of refraction of the incidence medium), nr ( index of 
refraction of the refractive medium), p (distance from 

the object to surface), or F (focal power of the surface). 
The distance from the image to the anterior pole of 
the surface (s) is automatically determined (s = a + 
f). In fact, this equation (F. 59) can be rearranged:

 [F - (ni / p)] (a + f) = nr → (a + f) (F. p - ni) = nr. p → 
 [p. (nr − ni) / RA] - ni = (nr. p) / (a + f) →  
[p. (nr − ni) a / b2] - ni = (nr. p) / (a + f) 

But given , b2 = a2 - f 2

[p. (nr – ni). a] - ni (a
2 – f2) = nr . p (a - f) → 

– p. ni . a – ni (a
2 – f2 ) = – nr . p. f → 

 p (nr. f - ni. a) = ni (a
2 - f2) (F. 60)

More concisely,

 p. [nr. (a. e) - ni. a] = ni (a
2 - a2e2) → 

 p. (nr. e - ni) = ni. a (1 - e2) (F. 61)

Further, depending on RA, since 

b2 = a2 - f2 = a2 (1 - e2)  
p. (nr. e - ni) = ni. a (b2 / a2) →  

p. (nr. e - ni) = ni. b
2 / a 

→ p. (nr. e - ni) = ni. RA (F. 62)

In fact, for objects at infinity (p = ∞), nr. e = ni, 
as already demonstrated. Thus, for the object at infi-
nity (p = ∞) the eccentricity of the “aspherical” curve 
(e) equals the reciprocal of the refractive indices of 
refraction on the incidence (ni) and refractive (nr) me-
dia. For distance p = 120 cm, RA = 20 cm, ni = 1.0, 
and nr = 1.5, the eccentricity of the curve is

 120 (1.5 e - 1.0) = 1.0 x 20 →  
9.0 e − 6.0 = 1.0 → e = 7/9 = 0.777… 

which is greater than the eccentricity of the sphe-
rical curve for the object at infinity (e = 1/1.5 = 2/3 
= 0.666…). This eccentricity (e = 2/3) is therefore 
not appropriate to nullify the spherical aberration for 
images of an object situated at other distance.

 The value of this ellipse semimajor axis (a) is 
determined by:

 a (1 - e2) = RA

i.e., a = 20/[1 − (0.777)2 ] = 50.625 cm;  
hence f = 39.375 cm and b ≈ 31.820 cm.

However, for other incidences on this surface, 
considering the distance of 120 cm (= p) from the 
object to the front vertex of the major axis of such an 
elliptical surface, spherical aberration still persists, as 
table 7 shows (second column). Finally, to possibly 
nullify the “spherical” aberration (or curvature aber-
ration) corresponding to an object at a finite distance, 
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between the 0.3651 flatness curve (which ma-
tches the 10° incidence ) and the 0.3499 (which 
matches the 20° incidence ), an intermediate 
flatness curve will promote the formed image at 
90 cm from the surface for a certain specific in-
cidence, between 10° and 20°.

d) The curve of a given eccentricity produces negative 
aberrations for incidences lower than that whi-
ch promotes the desired position of the image (at  
90 cm); and positive aberrations for incidences 
greater than the specific. 

e) Thus, a curve promoting total asphericity (images 
positions always at 90 cm) should have a decrea-
sing eccentricity (and/or flatness ); in this case, 
starting from e = 7/9, third column, with an in-
creasing angle of incidence. It would not be an 
elliptical curve, therefore.

f) Even if such a curve could then be constructed, it 
would serve to neutralize the aberration of “sphe-
ricity” for, only and specifically, the position of the 
object at p = 120 cm (and mediums of incidence 
and refraction such as those aforementioned). For 
other distances and other indices of refraction , a 
new curve specific to each case should be cons-
tructed.

In fact, the fundamental equation by which one 
can understand the relationship between the geome-
tric properties of an elliptical curve and the basic law 
of refraction (by Snell and Descartes) is that of F. 22, 
that is, e = (sin g) / (sin j), where j = i - w (for finite- 
distance objects) and g = r, the angle of refraction ob-
tained from this incidence. In other words, the equi-
valence between the angle of incidence (i) and that of 
refraction (r) - which must always obey Snell’s law- is 
also subordinated to the ellipse’s geometry with its 
specific (e) eccentricity. Despite not explicit in table 7, 
this F. 22 is only satisfied at a specific angle (i - w), 
corresponding to an incidence (i) which relation to the 
angle of refraction (r) expresses the eccentricity of the 
curve (e) value. Tables 8 and 9 show values of some of 
the variables of the ellipse geometry for different an-
gles of incidence (i) relative to the ellipse’s center (θ), 
when w values also vary, for ellipses with eccentrici-
ties e = (f / a) = 38.8584 / 51.1416 = 0.7598 (Table 
8) and e = 37.8858 / 52.1142 = 0.7270 (Table 9). 
Note the highlighted (red) values of s = 90.0000 (the 
position of the image satisfied, in each case, by refrac-
tion for angles θ = 20° in Table 8; and angles θ = 40° 
in Table 9) and those of the respective relations of the 

this curve with that “typical” eccentricity (e = 7/9) 
shows nothing special compared to others (e.g., with 
e = 2/3, as seen in Figure 16). It only represents the 
maximum eccentricity value, such that a + f = 90 cm 
and RA = 20 cm. In fact, for an ellipse of greater 
eccentricity, such as e = 0.8, with a = 50 cm and  
f = 40 cm, then RA = b2/a = (a2 - f2)/a = 18 cm.

 For this ellipses family (with a + f = 90 cm and 
RA = 20 cm) other eccentricities may be specific to 
values of other incidences, as table 7 shows. Remem-
ber that for a finite distance and a non-axial inciden-
ce, the applicable formula for the calculation where 
the distance at which the image (s) is formed equals  
a + f = a + ae = a ( 1 - e) is F.5:

 nr / ni = {[R2 + (s-R)2 + 2 (s-R).(R- y2)½]½.  
(p+R)} / {[R2 + (p+R)2 - 2 (p+R).(R2-y2)½ ]½ 

(s-R)} (F.63)

in which the value of the radius of curvature (R) 
varies according to the point of incidence but with a 
specific value (corresponding to y), such that the ima-
ge forms at distance s = 90 cm. 

The results in table 7 are paradigmatic:
a) The second column corresponds to a circular curve 

(zero eccentricity, flatness 0). Note that the more 
peripheral the incidence point (the greater the an-
gle θ value), the closer to the surface the correspon-
ding image forms (red numbers), which means the 
so-called positive “spherical” aberration.

b) Curves of greater eccentricity (and greater flat-
ness) will progressively correct this aberration. 
E.g.: for eccentricity e = 37.8858/ 52.1142 (se-
venth column from the left) the aberration is cor-
rected to the incidence of 40° (the image forms at 
exactly 90.000 cm, as desired). For this inclination 
(40°), greater eccentricities will produce positive 
aberrations (red colored numbers) and smaller ec-
centricities will produce negative aberrations (blue 
colored numbers). (Exception made to the circle, 
second column, where e = 0/20.0 = 0.)

c) Elliptical curves can’t prevent the “spherical 
aberration” of images of objects located at a fini-
te distance. At best, a curve with a certain eccen-
tricity promotes the coincidence of the position 
of the image produced by null incidence (in this 
case, 90 cm from the surface) only for another 
incidence. The table shows the eccentricities of 
the curves corresponding to incidences of 10° 
to 70°, although curves of intermediate flatness  
between those shown are also possible. E.g.:  



Bicas HEA

eOftalmo. 2021;7(2):58-84.
 

76

eOftalmo

sines of the angles (i − w) and r, coinciding with the 
value of the corresponding eccentricity of the curve  
(e = 0.7598 in Table 8; 0.7270 in Table 9), respecti-
vely. In other cases, this coincidence is inexistent and 
the image position does not occur at the desired point  
(s = 90.0000 cm).

Figure 17 also shows the relationship between an 
ellipse’s variable k = 1 - e2 and the polar (angular) co-
ordinate of a point (measured from its center), which 
refracted ray therein (from an incident ray originating 
from a finite-distance object) reaches the optical axis 
in the same place where this object’s image corres-

Table 8. Values of geometric variables at the incidence point of an elliptical curve with focal power + 2.5 D and 0.7598, which separates media 
with refractive indices ni = 1.0 and nr = 1.5, for an object at a distance p = 120 cm.

θ y x w i – w i r s
sen r

sen (i–w)

10° 8.7032 49.3584 4.0877 22.6444 26.7321 17.4504 97.5256 0.7789

20° 16.2420 44.6244 7.3155 40.7322 48.0477 29.7226 90.0000 0.7598

30° 22.0777 38.2397 9.4318 53.7924 63.2243 36.5258 83.9309 0.7376

40° 26.2830 31.3228 10.6462 63.2645 73.9108 39.8331 80.4639 0.7172

50° 29.1882 24.4918 11.0699 70.4722 81.5421 41.2554 78.8399 0.6997

60° 31.1283 17.9719 11.4876 76.2861 87.7737 41.7716 78.4371 0.6857

Table 9. Values of geometric variables at the incidence point of an elliptical curve with focal power + 2.5 D and e = 0.7270, which separates 
media with refractive indices ni = 1.0 and nr = 1.5, for an object at a distance p = 120 cm

θ y x w i – w i r s
sen r

sen (i–w)

10° 8.9004 50.4765 4.1849 20.5042 24.6891 16.1685 119.0310 0.7950

20° 16.7592 46.0456 7.5723 37.6658 45.2382 28.2526 107.1582 0.7747

30° 23.0295 39.8881 9.8800 50.7626 60.1425 35.5246 96.7667 0.7502

40° 27.6939 33.0043 11.2592 60.6677 71.9269 39.3291 90.0000 0.7270 

50° 31.0063 26.0173 11.9821 68.4144 80.3965 41.0961 86.1234 0.7069

60° 33.2660 19.2061 12.2737 74.7718 87.0455 41.7422 84.0753 0.6900

Table 7. Position of Image of an object situated at p = 120 cm from elliptical surfaces with dioptric power = + 2.5 D (RA = 20 cm, index of 
refraction of incidence medium ni = 1.0 and of refractive medium, nr = 1.5) of different eccentricities ( e = f/a), with incidences to points of 
different polar coordinates (θ) measured from the center of the ellipse, where a is the value of the semimajor axis, f the focal semidistance 
and 1 − k½ its flatness.

θ

0
0

20.000

0.3715
39.3750
50.6250

0.3651
39.2275
50.7725

0.3499
38.8584
51.1416

0.3315
38.3873
51.6127

0.3133
37.8858
52.1142

0.2963
37.3823
52.6177

0.2804
36.8845
53.1155

0.2657
36.3916
53.6084

0° 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.000

10° 88.270 87.085 90.000 97.526 107.626 119.031 131.217 144.053 157.605

20° 83.444 81.618 85.378 90.000 98.082 107.158 116.785 126.836 129.922

30° 76.450 77.596 79.365 83.931 90.000 96.767 103.878 111.143 118.814

40° 68.419 75.686 77.029 80.464 84.997 90.000 95.203 100.519 105.948

50° 60.357 75.199 76.242 78.840 82.351 86.123 90.000 93.915 97.867 

60° 52.972 75.497 76.332 78.437 81.152 84.075 87.041 90.000 92.954

70° 46.658 – – – – – – – –

80° 41.543 – – – – – – – –

1-k½

 f
 a
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ponding to zero incidence is formed. Note that this 
ellipse variable in which this situation occurs is greater 
the more peripheral the point where the refraction 
is considered (purple line), i.e., for each angle taken 
from the center of the ellipse, an increasing variation 
of k (as a function of the angulation value) would be 
adequate to satisfy such conception. Contrarily, for 
this desired asphericity to occur for any point on the 
curve, the representation of a single k value would be 
that of a straight horizontal line (perpendicular to 
the ordinate axis and parallel to the abscissas axis).

The different positions of the curvature centers of 
each point of the surface and their refractometric 
consequences 

One of the peculiarities of the elliptical curve is 
that there is a specific center of curvature for each 
of its points. Its derivation was outlined in figure 
14. The calculation of its coordinates, as well as the 
value of the actual curvature radius (RP = PCP) and 
“apparent” (RM = PM) curvature radius were explai-
ned by figure 15 and by F.49 and F. 50 (for coordinate 
values), F. 27 and F. 43 (curvature radius RP values by 
polar and Cartesian coordinates, respectively), F. 44 
(apparent radius of curvature values PM = RM) and 
F. 48 (values of the relationship between RP and RM).

The geometric location of the various centers of 
curvature, from the anterior apical point (A), RA (F. 
28) to the vertex of the minor semiaxis (B), RB (F. 29) 
and their relationships (F. 40-42), crossing the inter-
mediate curvature centers, is the so called ellipse’s 
evolute (Figure 18).

In ellipses, the points of greatest curvature (A1 
and A2, radii of curvature A1A’ and A2A,” Figure 18), 
have the centers of the respective osculating circles 
(i.e., the centers of curvature of these points) within 
the ellipse, whereas the points of smallest curvature 
(B1 and B2,, curvature radii B1B’ and B2B,” Figure 18) 
have the centers of the respective osculating circles 
(i.e., the centers of curvature of these points) either 
outside or inside the ellipse (see Figure 12). The 
ellipse’s evolute is analytically described by equation:

Figure 17. Graphical representation of the relationships between the 
ellipse’s variable k = 1 – e2 and the angle of incidence relative to 
the ellipse’s center (θ), must be such that, by refraction, the image 
forms 90 cm away from the surface as per table 7 data (purple line). 
Note the almost perfect linearity between 10° and 60° positions for 
k values correcting spherical aberration, at each considered angle 
but in a line inclined in relation to the axes instead of as ideally 
desired: a straight line parallel to the axis of the abscissas, as it 
would be by the conception of a “total” asphericity. The green and 
red dotted lines correspond to table 8 (angle of 20°) and table 9  
(angle of 40°) results, respectively. They show “deviations,” i.e. 
“aberrations of sphericity,” in relation to the points where this 
aberration should not exist.

Figure 18. Graphic representation of an ellipse and the locus of 
the centers of the oscillating circles of each of its points (evolute), 
i.e., of the locus of the centers of curvature of each one of them. 
Considering the second quadrant (above and to the left), in which 
the ellipse is represented by a solid black line, the point A1 (vertex 
of the semimajor axis) has its center of curvature at A’ (the radius 
of curvature is AA ‘); point B1 (vertex of the minor semiaxis) has its 
center of curvature at B’ (radius of curvature is B1B’); and between 
them, points P and V, have their respective centers of curvature at P’ 
( the radius of curvature is PP’) and V’ (radius of curvature is VV’). 
The red solid line between A’ and B’ is the corresponding evolute 
of this quadrant. Note that each radius of curvature is normal 
(perpendicular) to the considered point of the ellipse and tangent 
to the evolute. (The figure’s proportions are strictly maintained on 
the scale, where A1O = a = 7.2; B1O = b = 4.0; therefore, A1A’ =  
RA = b2/ a = 2.22 and B1B’ = RB = a2/b = 12.96.)
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[(a. x)2/3 / (a2 - b2)2/3] + [(b. y)2/3 / (a2 - b2)2/3] = 1 (F. 64)

The radius of curvature (RP) value of any point of 
an ellipse can be determined by both F. 27 and F. 48. It 
always requires the knowledge of two of the ellipse’s 
variables (a, b, f, or e, through which the other two 
are calculated) as well as defining the point for which 
the respective radius of curvature is required. This 
raises the need to know two of their coordinates (the 
Cartesian, x and y, or one of them plus the angular 
coordinate θ). For example, by replacing the value of 

b2 = a2 - f2 = a2 - (ae)2 = a2 (1 - e2) in F.27:

 RP = a2. a2 (1 - e2) / [a2 cos2 j + a2 (1 - e2) sin2 j]3/2 → 
RP = a4 (1 - e2) / [a2 - a2 e2) sin2 j]3/2 →  
RP = a4 (1 - e2) / a3 [1- e2 sin2 j]3/2 → 

 RP = a (1 - e2) / (1- e2 sin2 j)3/2 (F. 65)

In fact, if j = 0°, RP = RA = a (1 - e2) = a. (b2/a2) = 
b2 / a, ratifying the F.28. If j = 90°, from F. 65 it comes 
RP = RB = a (1 - e2) / (1 - e2)3/2 = a / (1 - e2)½ = a / (b2/
a2)½ = a / (b/a) = a2/b, ratifying the F. 29.

From F. 48 and F. 44, the angles i and r may be 
replaced by their respective generic versions, j and 
g, where (sin g)/(sin j) = e, hence: y = RM. sin i =  
(RP. cos2 r). sin i = RP (1 - sin2 r). (sin i) = RP (1 - sin2 g).( sin j) → 

RP = [ y / (1 - e2 sin2 j). sin j] (F. 66)

 Or, still, by F. 25 (PM = RM) and F. 48:  
RP = RM / cos2 r = RM / (1 - e2 sin2 j) →

RP = [a2(1 - e2)2 + e2y2]½ / (1 - e2 sin2j) (F. 67)

Thus, for example, for the ellipse with a = 
50.625, e = 7/9 and θ = 10°, from F. 16 it comes y = 
8.594755891 . Hence, by F. 25, RM = 21.08759556, 
and thus, j = arc sin (y / RM) = 24.05252876°. Fi-
nally, either by F. 65, F. 66, or F. 67, we can determine 
RP to be 23.44343249.

Table 10 shows the radius of curvature (RP) va-
lues for points of this ellipse, with different angular 
coordinates relative to its center (θ), as well as those 
of other corresponding variables. Figure 19 depicts 
the variation of these curvature radii and the corres-
ponding dioptric values (for a curve separating media 
with indices of refraction ni = 1.0 and nr = 1.5).

It is easy to understand from figure 19 that the 
dioptric values of this aspherical elliptic curve pro-
gressively reduces as the incidence (parallel to the 
optical axis) becomes more peripheral (blue line). 

It should be noted, however, that a prolate curve is 
being considered, i.e., with the major axis coincident 
with the horizontal plane. If the elliptical curve is ro-
tated 90° around an axis perpendicular to the plane of 
its representation, passing through its center, its ra-
dii of curvature and respective centers do not change 
relative to the ellipse. Instead, it assumes an oblate 
shape, i.e., with the minor axis coinciding with the 
horizontal (Figure 20) and therefore with decreasing 
radii of curvature and respective increasing dioptric 
values as more peripheral incidences occur. 

Figure 19. Representation of the radius of curvature (RP) in cen-
ti meters (blue line) and the respective dioptric values (red line), 
for each polar coordinate (angle θ) for an ellipse with eccentricity 
e = 7/9, when the refractive indices of refraction for the media of 
incidence and of refraction are 1.0 and 1.5.

Table 10. Values of radii of curvature (RP) for points with different 
angular coordinates (θ) of an ellipse with eccentricity e = 7/9, 
semimajor axis, a = 50.625. The values of auxiliary variables are 
also shown: y (shortest distance from the considered point to 
the main axis of the ellipse), RM (value of the “apparent” radius 
of curvature), i.e., distance between the considered point of the 
surface and the optical axis (on the bisector of the angle between 
its lines to the foci) and j (angle of the radius of curvature with the 
optical axis, equal to the angle of incidence, when the incidence is 
parallel to the optical axis).

θ y RM  j RP

0° 0 20.000  0° 20.000

10° 8.595 21.088 24.053° 23.443

20° 15.945 23.533 42.654° 32.582

30° 21.526 26.082 55.617° 44.360

40° 25.467 28.149 64.788° 55.759

50° 28.145 29.651 71.660° 65.174

60° 29.911 30.679 77.151° 72.191

70° 31.018 31.337 81.817° 76.937

80° 31.626 31.703 86.015° 79.659

90° 31.820 31.820 90.000° 80.544
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cations, the principles that govern this multifocality 
(much desired in ophthalmological practice) will only 
be addressed briefly. 

Consider an elliptic curve which represents the 
first (or anterior) principal plane of a lens, i.e., the 
imaginary place where all the refraction of incident 
(and refracted) rays takes place, whose effect would be 
of a decreasing multifocal dioptric power in a prolate 
curve (Figure 18), or crescent in an oblate (Figure 20). 
Due to the greater applicability of increasing multifo-
calities, the example will be restricted to this concept 
and shape (oblate) of the ellipse, whose explanation 
will be developed based on figure 21.

Let be R1 the retinal (foveal) image of the object 
O1 (located at infinite distance) formed by the “lens” 
(the abstract surface A1B1). The dioptric power of this 
surface at point B1 is assumed to correct a possible 
optical error of the ocular system, so that its value 
can be empirically determined. Note that the visual 
axis (line R1C E1 O1) is coincident to the radius of cur-
vature (B1B’) at point B1, i.e., is tangent to the curve’s 
evolute at B’. Another line tangent to the ellipse’s evo-
lute at P’ may be made coincident to a new position. 
of the visual axis to fixate object O3 (line R3CE3O3), 
so that PP’ is the radius of curvature of the surface 
at point P’, i.e., the point where the visual axis to 
fixate the object O3 (line R3CE3O3) cross the surface. 
The optical power of P may be chosen to allow the 
required optical correction for objects (O3) at “near 
distances” (the so-called “addition” over the required 
optical correction for “far distances”). Therefore, if 

Figure 20. Ellipse identical to that on Figure 18, differing from it in that 
it was rotated 90° counterclockwise, around an axis perpendicular to 
the plane considered, crossing the center of the figure. Note that all 
proportions and relationships are maintained.

Figure 21. Schematic representation of an elliptical surface (A1B1) 
and of its respective evolute (red line, between points A’ and B’, the 
centers of rotation of points A1 and B1, respectively) before an eye 
(black circle) whose center of rotation is C (a little behind the actual 
geometric center of the eye). E1R1, E2R2 and E3R3 are the successive 
positions of the visual axis for fixation of objects O1, O2 and O3, 
respectively. For simplification, the visual axis was supposed to cross 
the center of ocular rotation (C).

The multifocality of elliptical curves
As the dioptric values of a lens at its different 

points are directly proportional to those of its respec-
tive curvatures, i.e., the greater the curvature of a sur-
face at a given point (smaller the radius of curvature 
therein), the greater its respective dioptric power, the 
elliptical curves naturally lend themselves to satisfy 
multifocality, according to the incidence and/or the 
direction of the refracted ray; in other words, accor-
ding to the direction of the visual axis that crosses it.

 In fact, by choosing a dioptric value (i.e., a cur-
vature) for a given point on a surface, it is possible 
to set a new curvature (greater or lesser) for another 
point, such that it features a transition of the cor-
responding dioptric values (progressive or regressive) 
between them. More common is to want a certain 
dioptric value for a “far” distance (e.g., +1 D) and 
a higher one for a “near” distance (e.g. + 4 D), whi-
ch usually occurs at downward gaze positions. In a 
myopic person, the case would be a variation from -5 
D to -2 D, for example, but regressive variations (or 
semiprogressive, different names to basically express 
the same concept) may also be convenient. Although 
it is not this dissertation’s aim to discuss the con-
venience and applications of such clinical concepts, 
nor the technical difficulties of operating their fabri-
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the surface’s dioptric power values for points B1 (“far 
distances”) and P (“near distances”) are chosen, that 
means, if radii of curvatures of surface’s points B1 and 
P are known (as function of variables nr and ni), the 
curve between B1 and P is also determined. 

Intermediate surface’s points between B1 (the lon-
ger radius of curvature, therefore the lesser dioptric 
power) and P (the shorter radius of curvature, the-
refore the greater dioptric power) will have interme-
diate radius of curvature and, therefore, intermediate 
dioptric powers, so that a surface’s “multifocal” effect 
results. Note, however, that as B’ and P’ are tangents 
to the curve’s evolute and coincident to the optical 
axis, the tangent point to the evolute at any other 
intermediate point (as V’, which corresponds to the 
surface’s point V), lies below the center of rotation 
C (for which passes the visual axis). Therefore, the 
visual axis (R2CE2V) and the surface’s radius of curva-
ture at V (= VV’) although having a common point of 
coincidence (V) are not collinear. The angle between 
them (R2VV’) is equal to the angle of refraction (r) at 
V, so that there exists at this same point (V) an angle 
between the directions of the actual position of the 
object in space (O2), line VO2 and its perceived one 
(O’2), line VO’2, the angle of incidence (i). 

Although the rationale of the multifocality of an 
elliptical curve is so relatively simple, the calcula-
tions are complex and will not be here presented.

Appendix: sphere, spheroids, and ellipsoids
Refractions occur on surfaces, or on entities of 

three-dimensional space that can be analytically des-
cribed by specific values in each of its axes. Circles, 
ellipses, and other curves are “figures,” or flat sections 
(in two-dimensional space) of realities (in three-
-dimensional space). In other words, they are me-
rely pictorial representations (lines) of solids which 
surfaces (three-dimensional) separate the media in 
which refractions occur. Thus, it is appropriate to 
extend the study on the “realities” of which these fi-
gurations now addressed (elliptical curves) are mere 
simplified (planar) representations 

In ophthalmology, it is customary for the three 
spatial axes to be named as “z” (vertical), “y” (hori-
zontal, longitudinal, i.e., coincident with the visual 
axis) and “x,” also horizontal, but perpendicular to 
the “y” axis, separating “left” and “right,” or “lateral” 
(or “temporal”) and “medial” (or “nasal”), mutually 
orthogonal, i.e., each axis belonging to two planes 
and perpendicular to the remainder. Thus, although 

the structures may have any sizes, they can be repre-
sented by their proportional dimensions on each of 
these axes.

 A volume represented by three axes of equal di-
mensions (x = y = z) is a sphere. If two of them are 
equal but different from the third, the possibilities are 
six (x = y > z; x = y < z; x = z > y ; x = z < y; y =  
z > x; y = z < x) and the represented volumes are 
spheroids (Figure 22). In fact, they are solids gene-
rated by the rotation of an ellipse, around one of its 
axes (Figure 23) and, therefore, the sections perpen-
dicular to that axis of revolution will always be re-
presented by circles (hence the name “spheroids”). 
Finally, when the three axes are described by different 
values, the possibilities are six more (x > y > z; x > z 
> y; y > x > z; y > z > x; z > x > y; z > y > x) and 
solids called scalene ellipsoids. (Figure 24, showing 
one of them).

Figure 22. Illustration of spheroids: (a): prolate (x > y = z); (b): prolate 
(y > x = z); (c): prolate (z > x = y); (d): oblate (z = y > x); (e): oblate 
(x = z > y); (f): oblate (y = x > z).

A B C

D E F

Figure 23. Representation of spheroids, three-dimensional figures 
resulting from the rotation of an ellipse around its major axis, MM 
(generating a prolate spheroid), or smaller, mm (generating an oblate 
spheroid).
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Note that in the prolate form (similar to a kibbeh, 
a rugby ball, or a football) one of the axes is longer 
than the two others (equal) and in the oblate form 
(similar to a dragee, or a thickened disc at its center, 
like a “flying saucer”), one of the axes is shorter than 
the other two (equal). However, always considering 
the relative position of the axes as coincident to that 
of the eye (y, the longitudinal, or anteroposterior; z, 
the vertical, or super-inferior; and x, the transverse, 
or latero-medial), the differences between these pre-
sentations appear. For example, in prolates by the dis-
position of the major axis (their “acute peaks” ) and 
in oblates by the disposition of the minor axis (their 
“ flat poles”).

Thus, when the longer axis is y (longitudinal), the 
vertical (between A and S) and horizontal (between 
A and M) curves will be elliptical and equal to each 
other (Figure 22b) and regardless of the surface appea-
rance (like, for example, the cornea) is “conical”, the-
re is no astigmatism (difference in dioptric powers 
between them). Thus, also, if the minor axis is the 
y (longitudinal), the vertical curve (between A and S) 
and the horizontal (between A and M) will be ellipti-
cal and equal to each other (Figure 22 e); the surface 
appears “conical” in these two planes (or meridians) but 
also without astigmatism. When the major or minor 
axis is x, the transverse (respectively, Figures 22 a and 
22 d), there is a difference between the curve of the 
horizontal plane (between A and M, elliptical) and the 
vertical (between A and S, circular), therefore causing 
astigmatism. In figure 22 a, the plane (or meridian) 
of lesser curvature ( greater curvature radius, lesser 
dioptric power) is horizontal, configuring an astigma-

tism “with-the-rule”; in figure 22d, the greater curva-
ture (smaller curvature radius, greater dioptric power) 
is horizontal, representing an example of “against- 
the-rule” astigmatism. Thus, also, when the major 
or minor axis is the vertical (z, respectively figures 22 
c and 22 f) there is a difference between the curve in 
the vertical plane (between A and S, elliptical) and the 
horizontal (between A and M, circular), so that figure 
22 c represents an “against-the-rule” astigmatism and 
figure 22 f represents an astigmatism “with-the-rule”. 
Although it cannot be guaranteed (since in the com-
position of ametropias the axial factor is relevant), 
it is at least allowed to conjecture that errors related 
to curvatures induce refractometric errors; therefo-
re, astigmatism: myopics in their excesses (in oblate 
spheroids, Figures 22, d, f), or hyperopics in their in-
sufficiencies (in the prolate spheroids , Figures a, c). 
Remember that, in these astigmatisms, the pointed 
prolate form, the longer axis is vertical (Figure 22 c) 
or transverse (Figure 22 a); and in the oblate, or flat 
form, too (Figures 22 d and 22 f, respectively), as 
opposed to the condition in which the z and x axes 
appear equal (Figures 22 b and 22 e), which raises 
apparently paradoxical interpretations regarding the 
respective curvatures considered.

SYNOPSIS
 Introduction: Knowledge about refraction is 

shown to be essential in ophthalmic practice. 
Refraction is a physical phenomenon dependent 
on the change in the speed of propagation of ra-
diant energy in its transition from a medium 
from where it originates (the medium of inciden-
ce) to another, by which it follows (the medium 
of refraction), governed by a law of great simpli-
city, which dictates the relation of such speeds 
(or, equivalently, relative numbers that represent 
them, the specific refractive indices of each of 
these media), and the directions in which the 
radiant energy wavefronts propagate. The mea-
surement of these directions is specific to each 
point of the surface of separation between the 
media of incidence and of refraction and depends 
on an imaginary line perpendicular to that point 
(its normal). Although refraction is a punctual 
phenomenon, only considering the relation of 
directions of the incident and refracted radiant 
energy, it is, in broader terms, dependent on the 
surface to which such a point belongs.

Figure 24. Representation of solids according to the length of their 
orthogonal axes: equal (sphere), two equal and one longer (prolate 
spheroid) or shorter (oblate spheroid), or three unequal (ellipsoids), 
of which one (x > z > y) is shown.
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 Curvature of a surface: The characterization of 
a point on a surface is determined by its curva-
ture, a concept that is quantified by the length 
of a straight line, the radius of curvature of the 
point in question. In geometric optics, although 
the direction in which the image of an object is 
formed depends only on Snell’s law, its position is 
subjected to the radius of curvature of the point 
where the refraction takes place. The radius of 
curvature is infinite on flat surfaces, finite and 
constant in spheres (or circles), finite and variable 
in other curves (such as conical sections). All cor-
rective lenses for ocular optical defects are formed 
by curved surfaces (at least one). Ocular refrac-
tometry texts address refraction on flat (prisms) 
and spherical (lens) surfaces and are limited to 
them. Refraction on spherical surfaces is inhe-
rently defective (spherical aberrations). Spherical 
aberration-free (aspherical) and multifocal lenses 
require the development of optics based on va-
rying radii of curvature at different points on the 
refracting surface. 

 Refraction on spherical surfaces: The princi-
ples and formulations of this type of refraction 
are reviewed for the generic case of the position 
of the image of an object point located at a finite 
distance. Based on these principles, the paraxial 
ray equation, that of when the object is located at 
an infinite distance, and that of the basic formu-
lation of the surface dioptric power are derived. 
Despite the relative simplicity of its study, refrac-
tion on spherical surfaces has as an intrinsic con-
sequence: spherical aberration. This correspon-
ds to the distribution of incident radiant energy, 
for example, in a beam of parallel rays (flat wave 
fronts) over an extensive region of space where 
the various crossings of the various refracted rays 
occur, delimited by a surface (the caustic).

 Aspherical Surfaces: The ones concentrating in 
a single point (the image focal point, when the 
incidence comes from infinity) all the refracted 
radiant energy. Their design requires that the 
farther from the optical axis the incidence is, the 
smaller the radius of curvature of the surface be-
comes, when compared to that of the surface’s 
vertex (located on its optical axis). This notion 
corresponds to what occurs in ellipses (and other 
curves), which shapes can accentuate the sphe-
rical aberration of spherical surfaces (aberrations 

called “positive”), reduce it and even neutralize 
it (by an aspherical elliptical surface) or invert it 
(producing “negative” spherical aberrations). 

 The semantic question of asphericity: The di-
fferent ways in which ellipses and their varied 
results can be presented, raises the discussion 
about the inappropriateness of the term “spheri-
cal” aberration, as it does not depend exclusively 
on spherical surfaces and may occur in elliptical 
surfaces (in a “positive” or “negative” way). It is 
proposed to use the terms of superaberrant surfa-
ces for those which produce “positive” aberration, 
greater than that of the spherical aberrations of a 
sphere, subaberrant surfaces when they stil pro-
duce “positive” aberrations, but lesser than that 
of spherical surfaces), inaberrant when aberration 
is eliminated (the aspherical surfaces themselves) 
and contraberrant if they produce negative aber-
rations. With this terminology, any oblate surface 
will be superaberrant, whereas among the prola-
tes, sub-aberrations (“positive”), inaberrations, or 
contraberrations (“negative”) may be found. 

 The geometry of ellipses: The geometric proper-
ties of the ellipses, their terms and relationships 
are succinctly presented.

 Refraction on a surface without spherical aber-
ration: Based on the geometric properties of the 
ellipses, the condition under which the refraction 
of an incident ray parallel to the optical axis on 
one (any) of its points gives a refracted ray that 
meets the optical axis at one of the foci (the focal 
point surface image) is examined. It is possible to 
formulate that, in these cases (incidence of planar 
wavefronts), asphericity is achieved when the ec-
centricity of the ellipse (e) equals the ratio of the 
indices of refraction of the incidence (ni) and re-
fraction (nr) media, i.e., e = ni/nr. Equations sho-
wing the relationships between the different sur-
face properties and the values of its dioptric power 
are developed as well as the eccentricity values so 
that the surface be inaberrant (aspherical) accor-
ding to the index of refraction of the medium of 
refraction, when that of incidence is air (ni = 1.0).

 Positioning the center of curvature: We present 
the method by which the position of the center 
of curvature of any point of an ellipse can be de-
termined graphically, as well as the analytical 
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method for knowing its coordinates, the value of 
the respective radius of curvature and other rela-
tionships between the properties of these “asphe-
rical” ellipses. 

 The eccentricity of the spherical non-aberration 
curve as a contingency of the object’s position: 
It is shown that the curve for which “aspherici-
ty” is obtained for the incidence of planar wave 
fronts (objects situated at infinity, rays parallel to 
the optical axis) does not maintain this quality for 
objects at finite distances, i.e., the eccentricity of 
the asphericity promoting curve is a function of 
the distance from the radiation source.

 On the calculation of the eccentricity that 
maintains asphericity at finite distances: The 
fact that the shape (eccentricity) of the curve that 
provides asphericity for the formation of the (uni-
que) image of an object located at infinite distan-
ce does not maintain this quality to the object’s 
position at other distances, does not mean that 
a relationship cannot be found between a speci-
fic eccentricity and the distance from the source. 
This possibility is studied, and we find that there 
is in fact an appropriate eccentricity such that for 
a specific incidence, the position of the image of 
an object located at the finite distance coincides 
with that obtained from the definition of the focal 
power of the surface (i.e., with that of the null in-
cidence). However, for smaller and larger angles of 
incidence on the curve that ensures this “pairing”, 
the aberrations remain negative and positive, res-
pectively. Likewise, for a certain incidence, curves 
with smaller eccentricities produce negative aber-
rations and those with larger eccentricities will 
produce positive aberrations. The variability of 
eccentricity necessary to produce the coincidence 
of images of an object located at finite distance, 
depending on the angle of incidence, means that 
an elliptical curve (single eccentricity) cannot sa-
tisfy that condition (asphericity for images of ob-
jects situated at finite distances). objects). 

 The different positions of the curvature centers 
of each surface point and their refractometric 
consequences: The study of the positions of the 
centers of curvature of the different points of an 
elliptic curve is resumed to describe their proper 
“geometric place” , a new curve, the ellipse’s evo-
lute and what occurs when this ellipse is rotated 

around an axis perpendicular to its figure, making 
it pass from one “form” (prolate) to another (obla-
te). Although the eccentricity (descriptive of the 
“formal” relationships of the ellipse) remains the 
same, its spatial arrangement (with the longest 
axis horizontally or vertically) will transform de-
creasing variations of curvatures (increasing their 
respective radii, into curves called prolates) into 
increasing ones (oblates curves).

 The multifocality of elliptical curves: The va-
riability of the values of the curvature radii of an 
elliptical surface (defined by its eccentricity) is a 
matrix of what refractometry calls “multifocali-
ty.” Thus, increasing (“progressive”) or decreasing 
(“regressive”) dioptric power lenses are simple va-
riations of elliptical shapes (eccentricities) (even 
though calculations for proper adjustments to the 
required dioptric values may be complex).

 Appendix: spheres, spheroids, and ellipsoids: 
Ellipses are geometric curves resulting from the 
oblique sections of bodies (such as cones, cylin-
ders, toruses ), whose tridimensional extensions 
include spheroids and ellipsoids. These are des-
cribed in their conceptions (ellipse’s revolutions 
around its axes) and applications (e.g. in the defi-
nition of astigmatism).
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